基于多目标-理想点法的洞庭湖淤泥制备轻质骨料最优烧结条件

陈星佑, 张聪, 何怀光, 周双, 刘旭, 谢梦珊, 谢忠球

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (1) : 29-36.

PDF(13332 KB)
PDF(13332 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (1) : 29-36. DOI: 10.11988/ckyyb.20210852
河湖保护与治理

基于多目标-理想点法的洞庭湖淤泥制备轻质骨料最优烧结条件

  • 陈星佑1,2, 张聪2, 何怀光3, 周双3, 刘旭2, 谢梦珊2, 谢忠球2
作者信息 +

Multi-objective Optimization of Sintering Condition of Lightweight Aggregate Prepared from Dongting Lake Silt by Ideal Point Method

  • CHEN Xing-you1,2, ZHANG Cong2, HE Huai-guang3, ZHOU Shuang3, LIU Xu2, XIE Meng-shan2, XIE Zhong-qiu2
Author information +
文章历史 +

摘要

为了解决洞庭湖淤泥产量大、绿色处置技术落后、费用高等难题,从宏微观角度分析了淤泥的物理、化学性能和淤泥的可烧结性;开展正交试验研究了烧结条件与优质轻质骨料性能的关系,构建了多目标-理想点法优化模型,并提出一种可快速获取不同区域淤泥烧结最优条件的方法。研究结果表明:洞庭湖淤泥是一种典型的烧结易膨胀土体,三相图位于Riley三相图所规定的易于膨胀区间,具有烧结制备优质轻质骨料的可行性;洞庭湖淤泥制备轻质骨料的最优烧结条件为预热时间20 min、预热温度410 ℃、烧结时间5 min以及烧结温度1 112 ℃,烧结获取的轻质骨料孔隙率为23.31%、收缩率为5.75%、体积密度为1.28 g/cm3、抗压强度为20.35 MPa、1 h吸水率为14.33%。研究成果可解决洞庭湖淤泥处置难题,也可为其他湖泊淤泥的资源化利用提供新思路。

Abstract

The silt from Dongting Lake poses many challenges such as large production and high disposal costs with underdeveloped green disposal technology.A multi-objective model combined with ideal point method was constructed to quickly obtain the optimized sintering condition of silts in different regions.The physical and chemical properties and the sinterability of Dongting Lake silt were first analyzed from macro-and-micro perspectives,and the relationship between sintering conditions and performance of high-quality lightweight aggregates were then obtained by orthogonal experiments.The silt from Dongting Lake is a typical swellable soil when sintered,and is feasible to be prepared into high-quality lightweight aggregate as its three-phase diagram lies in the prone-to-swell zone specified by the Riley three-phase diagram.The optimum sintering conditions for preparing lightweight aggregate from Dongting Lake silt are as follows:20 min preheating time,410 ℃ preheating temperature,5 min sintering time and 1 112 ℃ sintering temperature.The sintered lightweight aggregate had a porosity of 23.31%,shrinkage of 5.75%,bulk density of 1.28 g/cm3,compressive strength of 20.35 MPa and water absorption rate of 14.33% per hour.The research findings help solve the problem of disposal of Dongting Lake silt and also provide new idea for the resource utilization of silt from other lakes.

关键词

洞庭湖淤泥 / 制备轻质骨料 / 烧结条件 / 正交试验 / 多目标-理想点 / 再利用

Key words

Dongting lake slit / lightweight aggregate preparation / sintering conditions / orthogonal test / multi-objective ideal point / recycle

引用本文

导出引用
陈星佑, 张聪, 何怀光, 周双, 刘旭, 谢梦珊, 谢忠球. 基于多目标-理想点法的洞庭湖淤泥制备轻质骨料最优烧结条件[J]. 长江科学院院报. 2023, 40(1): 29-36 https://doi.org/10.11988/ckyyb.20210852
CHEN Xing-you, ZHANG Cong, HE Huai-guang, ZHOU Shuang, LIU Xu, XIE Meng-shan, XIE Zhong-qiu. Multi-objective Optimization of Sintering Condition of Lightweight Aggregate Prepared from Dongting Lake Silt by Ideal Point Method[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(1): 29-36 https://doi.org/10.11988/ckyyb.20210852
中图分类号: TV422   

参考文献

[1] 王丽婧,田泽斌,李莹杰,等.洞庭湖近30年水环境演变态势及影响因素研究[J].环境科学研究,2020,33(5):1140-1149.
[2] 林日彭,倪兆奎,郭舒琨,等.近25年洞庭湖水质演变趋势及下降风险[J].中国环境科学,2018,38(12):4636-4643.
[3] 赵艳民,秦延文,曹 伟,等.洞庭湖表层沉积物重金属赋存形态及生态风险评价[J].环境科学研究,2020,33(3):572-580.
[4] 朱玲玲,陈剑池,袁 晶,等.洞庭湖和鄱阳湖泥沙冲淤特征及三峡水库对其影响[J].水科学进展,2014,25(3):348-357.
[5] 林 莉,李青云,吴 敏.河湖疏浚底泥无害化处理和资源化利用研究进展[J].长江科学院院报,2014,31(10):80-88.
[6] 刘松玉,詹良通,胡黎明,等.环境岩土工程研究进展[J].土木工程学报,2016,49(3):6-30.
[7] 武冬青,郭 琳.新加坡固体废物循环利用于填海造地技术的研究进展[J].环境科学研究,2018,31(7):1174-1181.
[8] 陈 萍,高炎旭,马美玲.疏浚淤泥与焚烧底灰混合固化方法的试验研究[J].水利学报,2015,46(6):749-756.
[9] MCGHEE T J.Water Supply and Sewerage[M].New York:McGraw-Hill,1991:12-19.
[10]DALLMANN W.Refractory Conservation for Waste Derived Fuel Burning Kilns[J].World Cement,1995,26(12):65-68.
[11]HE H T,YUE Q Y,SU Y,et al.Preparation and Mechanism of the Sintered Bricks Produced from Yellow River Silt and Red Mud[J].Journal of Hazardous Materials,2012,203/204:53-61.
[12]AKINTOLA G O,AMPONSAH-DACOSTA F,MHLONGO S E.Geotechnical Evaluation of Clayey Materials for Quality Burnt Bricks[J].Heliyon,2020,6(12):e05626.
[13]张亚梅,梅 浩,王月华,等.掺合料改性湖泊淤泥烧结生态驳岸砌块的研究[J].湖南大学学报(自然科学版),2018,45(6):106-112.
[14]XIAO CC,WANG X M,CHEN Q S,et al.Strength Investigation of the Silt-based Cemented Paste Backfill Using Lab Experiments and Deep Neural Network[J].Advances in Materials Science and Engineering,2020,doi:10.1155/2020/6695539.
[15]ZHANG H B,QI X L,WAN L Y,et al.Properties of Silt-based Foamed Concrete:A Type of Material for Use in Backfill Behind an Abutment[J].Construction and Building Material,2020,261:119966.
[16]LIN J L,LI J S,ZUO L,et al.Processing System of Rapid Dehydration,Solidification/Stabilization and Resource Reuse for Silt of River and Lake[J].IOP Conference Series:Earth and Environmental Science,2018,199(4):042042.
[17]许宇平,张 军,李慧英,等.河湖库塘淤泥处理及资源化再利用研究[J].哈尔滨商业大学学报(自然科学版),2018,34(1):36-40.
[18]沈恒祥,孔 云,庞建勇.陶粒混杂纤维混凝土强度正交试验研究[J].长江科学院院报,2021,38(5):144-148.
[19]姚韦靖,庞建勇,刘雨姗.轻骨料混凝土抗碳化性能及微结构分析[J].长江科学院院报,2021,38(4):138-143.
[20]KWEK S Y,AWANG H.Artificial Lightweight Aggregate from Palm Oil Fuel Ash (POFA) and Water Treatment Waste[J].IOP Conference Series:Materials Science and Engineering,2018,431(8):082005.
[21]SIWOWSKI T,RAJCHEL M,KULPA M.Design and Field Evaluation of a Hybrid FRP Composite-Lightweight Concrete Road Bridge[J].Composite Structures,2019,230:111504.
[22]HUANG L M,YU L,ZHANG H,et al.Composition and Microstructure of 50-year Lightweight Aggregate Concrete(LWAC) from Nanjing Yangtze River bridge(NYRB)[J].Construction and Building Materials,2019,216:390-404.
[23]ANTUNES D,MARTINS R,CARMO R,et al.A Solution with Low-cement-lightweight Concrete and High Durability for Applications in Prefabrication[J].Construction and Building Materials,2021,275:122153.
[24]MOHSENI E,TANG W.Parametric Analysis and Optimisation of Energy Efficiency of a Lightweight Building Integrated with Different Configurations and Types of PCM[J].Renewable Energy,2020,168:865-877.
[25]HAUG A K,FJELD S.A Floating Concrete Platform Hull Made of Lightweight Aggregate Concrete[J].Engineering Structures,1996,18(11):831-836.
[26]刘贵云.河道底泥资源化:新型陶粒滤料的研制及其应用研究[D].上海:东华大学,2002.
[27]邓宏卫.轻质高强粉煤灰陶粒的制备及其混凝土性能[D].哈尔滨:哈尔滨工业大学,2009.
[28]岳 敏.污泥的粉煤灰调理和污泥陶粒的制备及应用研究[D].济南:山东大学,2011.
[29]FRANUS M,BARNAT-HUNEK D,WDOWIN M.Utilization of Sewage Silt in the Manufacture of Lightweight Aggregate[J].Environmental Monitoring & Assessment,2016,188(1):10,doi:10.1007/s10661-015-5010-8.
[30]WANG L K,HAO Y L,ZHAO Z L,et al.Optimized Utilization Studies of Dredging Sediment for Making Water Treatment Ceramsite Based on an Extreme Vertex Design[J].Journal of Water Process Engineering,2020,38:101603.
[31]刘 晨,朱 航,何 捷,等.利用铁尾矿砂和活性炭制备轻质淤泥陶粒的研究[J].武汉理工大学学报,2016,38(12):23-27.
[32]陈彦文,王 宁,潘文浩,等.煤矸石陶粒制备工艺的优化实验[J].硅酸盐通报,2015,34(3):841-845.
[33]GONZLEZ-CORROCHANO B,ALONSO-AZCRATE J,RODAS M.Production of Lightweight Aggregates from Mining and Industrial Wastes[J].Journal of Environmental Management,2009,90(8):2801-2812.
[34]BETHANISS,CHEESEMAN C R,SOLLARS C J.Properties and Microstructure of Sintered Incinerator Bottom Ash[J].Ceramics International,2002,28(8):881-886.
[35]ZHENGG,KOZIN'SKI J A.Thermal Events Occurring during the Combustion of Biomass Residue[J].Fuel,2000,79(2):181-192.
[36]CHOPRA S K,LAL K,RAMACHANDRAN V S.Gas Producing Agents in the Production of Lightweight Aggregates[J].Journal of Applied Chemistry,2007,14(5):181-185.
[37]RILEY C M.Relation of Chemical Properties to the Bloating of Clays[J].Journal of the American Ceramic Society,1951,34:121-128.
[38]FAKHFAKH E,HAJJAJI W,MEDHIOUB M,et al.Effects of Sand Addition on Production of Lightweight Aggregates from Tunisian Smectite-rich Clayey Rocks[J].Applied Clay Science,2007,35:228-237.
[39]李明东,夏 霆,刘洋洋,等.海港疏浚含盐淤泥烧结陶粒试验研究[J].重庆交通大学学报(自然科学版),2016,35(6):81-85.
[40]HUNG M F,HWANG C L.Study of Fine Sediments for Making Lightweight Aggregate[J].Waste Management and Research,2007,25:449-456.

基金

湖南省水利科技项目(XSKJ2019081-24);湖南省研究生科研创新项目(CX202102062);湖南省科技创新计划资助项目(2020RC4049)

PDF(13332 KB)

Accesses

Citation

Detail

段落导航
相关文章

/