基于SEM的土体微观结构三维分析与分维计算方法

张豫川, 高旭龙, 刘东发, 黄鸿伟

长江科学院院报 ›› 2024, Vol. 41 ›› Issue (2) : 91-97.

PDF(4400 KB)
PDF(4400 KB)
长江科学院院报 ›› 2024, Vol. 41 ›› Issue (2) : 91-97. DOI: 10.11988/ckyyb.20221052
岩土工程

基于SEM的土体微观结构三维分析与分维计算方法

  • 张豫川1,2, 高旭龙1,2, 刘东发1,2, 黄鸿伟1,2
作者信息 +

SEM-based Three-dimensional Analysis and Fractal Dimension Calculation Method for Soil Microstructure

  • ZHANG Yu-chuan1,2, GAO Xu-long1,2, LIU Dong-fa1,2, HUANG Hong-wei1,2
Author information +
文章历史 +

摘要

土体微观结构研究很早就建立了三维空间的分形模型,但分形维数计算所需参数很难由常规土工试验得到,限制了分形理论在土体研究中的应用。基于陕西定边与甘肃兰州原状土样的扫描电镜(SEM)试验,提出了三维化处理与三角形网格原理联合方法,可以得到土体颗粒(孔隙)不同测量尺度对应的表面积与体积计算值,由此实现分形维数的计算,并通过分形理论在土水特征中的应用验证了方法的有效性与可靠性。另外,三维化处理还可获取视孔隙率、比面等土体微观结构参数,可以作为土体微观结构定量分析研究的新途径。

Abstract

Fractal three-dimensional model has long been used to study soil microstructure. However, the acquisition of parameters necessary for calculating the fractal dimension through conventional geotechnical tests poses challenges, thereby limiting the utilization of fractal theory in soil research. To address this issue, a combined approach integrating three-dimensional processing and triangular grid principle is proposed in this study based on the scanning electron microscope (SEM) testing of undisturbed soil samples collected from Dingbian, Shaanxi Province, and Lanzhou, Gansu Province. This approach enables the calculation of surface area and volume values corresponding to various measurement scales of soil particles (or pores), facilitating the determination of fractal dimensions. The effectiveness and reliability of the proposed method are validated by applying fractal theory to analyzing soil-water characteristics. Moreover, the three-dimensional processing technique allows for the determination of other soil microstructure parameters, such as apparent porosity and specific surface area. Consequently, it can be regarded as a novel method for quantitatively investigating soil microstructure.

关键词

扫描电镜(SEM) / 微观结构 / 三维分析 / 分形维数

Key words

scanning electron microscope(SEM) / microstructure / three-dimensional analysis / fractal dimension

引用本文

导出引用
张豫川, 高旭龙, 刘东发, 黄鸿伟. 基于SEM的土体微观结构三维分析与分维计算方法[J]. 长江科学院院报. 2024, 41(2): 91-97 https://doi.org/10.11988/ckyyb.20221052
ZHANG Yu-chuan, GAO Xu-long, LIU Dong-fa, HUANG Hong-wei. SEM-based Three-dimensional Analysis and Fractal Dimension Calculation Method for Soil Microstructure[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(2): 91-97 https://doi.org/10.11988/ckyyb.20221052
中图分类号: TU44   

参考文献

[1] ROMERO E, SIMMS P H. Microstructure Investigation in Unsaturated Soils: A Review with Special Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron Microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705-727.
[2] 刘祖典. 黄土力学与工程[M]. 西安: 陕西科学技术出版社, 1997. (LIU Zu-dian. Loess Mechanics and Engineering[M]. Xi’an: Shaanxi Science & Technology Press, 1997.(in Chinese))
[3] TYLER S W, WHEATCRAFT S W. Fractal Scaling of Soil Particle-Size Distributions: Analysis and Limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362-369.
[4] WEI T, FAN W, YUAN W, et al. Three-dimensional Pore Network Characterization of Loess and Paleosol Stratigraphy from South Jingyang Plateau, China[J]. Environmental Earth Sciences, 2019, 78(11): 333.
[5] YU B, LI J, LI Z, et al. Permeabilities of Unsaturated Fractal Porous Media[J]. International Journal of Multiphase Flow, 2003, 29(10): 1625-1642.
[6] GHANBARIAN B, HUNT A G, EWING R P, et al. Tortuosity in Porous Media: A Critical Review[J]. Soil Science Society of America Journal, 2013, 77(5): 1461-1477.
[7] YAO Y, ZHANG Y, GAO X, et al. Study on Permeability and Collapsibility Characteristics of Sandy Loess in Northern Loess Plateau, China[J]. Journal of Hydrology, 2021, 603: 126883.
[8] SERGEYEV Y M, GRABOWSKA-OLSZEWSKA B, OSIPOV V I, et al. The Classification of Microstructures of Clay Soils[J]. Journal of Microscopy, 1980, 120(3): 237-260.
[9] ROMERO E, GENS A, LLORET A. Water Permeability, Water Retention and Microstructure of Unsaturated Compacted Boom Clay[J]. Engineering Geology, 1999, 54(1/2): 117-127.
[10]LIU C, SHI B, ZHOU J, et al. Quantification and Characterization of Microporosity by Image Processing, Geometric Measurement and Statistical Methods: Application on SEM Images of Clay Materials[J]. Applied Clay Science, 2011, 54(1): 97-106.
[11]SOKOLOV V N, RAZGULINA O V, YURKOVETS D I, et al. Quantitative Analysis of Pore Space of Moraine Clay Soils by SEM Images[J]. Journal of Surface Investigation X-Ray, Synchrotron and Neutron Techniques, 2007, 1(4): 417-422.
[12]王宝军, 施 斌, 唐朝生. 基于GIS实现黏性土颗粒形态的三维分形研究[J]. 岩土工程学报, 2007, 29(2): 309-312. (WANG Bao-jun, SHI Bin, TANG Zhao-Sheng. Study on 3D Fractal Dimension of Clayey Soil by Use of GIS[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 309-312.(in Chinese))
[13]徐日庆, 邓祎文, 徐 波, 等. 基于SEM图像的软土三维孔隙率计算及影响因素分析[J]. 岩石力学与工程学报, 2015, 34(7): 1497-1502. (XU Ri-qing, DENG Yi-wen, XU Bo, et al. Calculation of Three-dimensional Porosity of Soft Soil Based on SEM Image[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1497-1502.(in Chinese))
[14]LI L, YI J, ZHANG W. Study on the Three-dimensional Micro-porosity of Solidified Sludge Using ArcGIS Technology[J]. Environmental Earth Sciences, 2021, 80(17): 537.
[15]MANDELBROT B. How Long is the Coast of Britain? Statistical Self-similarity and Fractional Dimension[J]. Science, 1967, 156(3775): 636-638.
[16]MARTíN M , MONTERO E. Laser Diffraction and Multifractal Analysis for the Characterization of Dry Soil Volume-Size Distributions[J]. Soil and Tillage Research, 2002, 64(1/2): 113-123.
[17]KRAVCHENKO A N, BOAST C W, BULLOCK D G. Multifractal Analysis of Soil Spatial Variability[J]. Agronomy Journal, 1999, 91(6): 1033-1041.
[18]CANIEGO F J, ESPEJO R, MARTN M A, et al. Multifractal Scaling of Soil Spatial Variability[J]. Ecological Modelling, 2005, 182(3/4): 291-303.
[19]杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899. (YANG Pei-ling, LUO Yuan-pei, SHI Yuan-chun. Soil Fractal Characteristics Measured by Mass of Particle-size Distribution[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899.(in Chinese))
[20]王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4): 545-550. (WANG Guo-liang, ZHOU Sheng-lu, ZHAO Qi-guo. Volume Fractal Dimension of Soil Particles and Its Applications to Land Use[J]. Acta Pedologica Sinica, 2005, 42(4): 545-550.(in Chinese))
[21]徐永福, 黄寅春. 分形理论在研究非饱和土力学性质中的应用[J]. 岩土工程学报, 2006, 28(5): 635-638. (XU Yong-fu, HUANG Yin-chun. Fractal-textured Soils and Their Unsaturated Mechanical Properties[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 635-638.(in Chinese))
[22]XU Yong-fu, MATSUOKA H, SUN De-an. Swelling Characteristics of Fractal-Textured Bentonite and Its Mixtures[J]. Applied Clay Science, 2003, 22(4), 197-209.
[23]谢和平. 分形几何及其在岩土力学中的应用[J]. 岩土工程学报, 1992, 14(1): 14-24. (XIE He-ping. Fractal Geometry and Its Application to Rock and Soil Materials[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14-24.(in Chinese))
[24]MANDELBROT B P. The Fractal Theory of Nature[M]. New York: Freeman. 1983: 25-48.
[25]PALKOVA J. Spatial Interpolation and Calculation of the Volume an Irregular Solid[J]. International Journal of Engineering, 2014, 4(8): 8269.
[26]HU G, XIONG L, LU S, et al. Mathematical Vector Framework for Gravity-Specific Land Surface Curvatures Calculation from Triangulated Irregular Networks[J]. GIScience & Remote Sensing, 2022, 59(1): 590-608.
[27]GYLLAND A S, RUESLATTEN H, PANIAGUA P, et al. Microscopy Techniques for Viewing the Inner Structure of Shear Bands in Sensitive Clays[J]. Geotechnical Testing Journal, 2016, 39(4): 688-694.
[28]XU H W, MA W B, ZHAO X W. Geographical Information System Course[M]. Beijing: Nation Defense Industry Press, 2010.

PDF(4400 KB)

Accesses

Citation

Detail

段落导航
相关文章

/