结构性黄土压缩特性的微观非连续变形分析

张杰, 张常亮, 李萍, 李同录, 乔志甜, 李强

长江科学院院报 ›› 2021, Vol. 38 ›› Issue (5) : 123-130.

PDF(5743 KB)
PDF(5743 KB)
长江科学院院报 ›› 2021, Vol. 38 ›› Issue (5) : 123-130. DOI: 10.11988/ckyyb.20200506
岩土工程

结构性黄土压缩特性的微观非连续变形分析

  • 张杰1,2, 张常亮1, 李萍1,2, 李同录1,2, 乔志甜1, 李强1
作者信息 +

Microscopic Discontinuous Deformation of Structured Loess under Compression

  • ZHANG Jie1,2, ZHANG Chang-liang1, LI Ping1,2, LI Tong-lu1,2, QIAO Zhi-tian1, LI Qiang1
Author information +
文章历史 +

摘要

黄土的结构性与其形成过程密切相关,并对其物理力学性质产生重要影响。针对结构性黄土的大孔隙和胶结特性,对DDA算法进行了扩展,将结构性黄土中起主要胶结作用的黏粒胶结嵌入已有的DDA算法中;使用Monte Carlo法和DDA模拟黄土的沉积过程,该方法能够模拟颗粒下落过程中的相互碰撞及摩擦,分析结构性黄土在压缩过程中颗粒的平动和转动规律,由此构建与原状黄土孔隙比接近的微观结构模型;进一步使用扩展DDA对所生成的黄土结构模型进行不同压力下的一维压缩试验模拟,并与室内压缩试验进行对比。发现胶结试样颗粒位移比不含胶结试样颗粒位移小,但整体规律相似;每个颗粒位移的大小和方向不尽相同,但主要以竖向位移为主;在压缩过程中,不同区域的颗粒位移存在较大差异,上部颗粒位移大,越往下部颗粒的位移越小。该研究成果可为从微观认识黄土力学行为提供一条途径。

Abstract

The structure of loess is closely related to its formation process and has an important impact on its physical and mechanical properties. In view of the large pores and cementation features of structured loess, we embedded the clay cementation which plays a major role in structured loess into the existing DDA. By using Monte Carlo method and DDA, we simulated the deposition process of loess, in particular, the collision and friction of particles in the falling process and analyzed the translational and rotational movements of particles in the consolidation process. On this basis, we constructed a microstructural loess model which is close to undisturbed loess in terms of void ratio. Furthermore, we simulated one-dimensional compression test on the structured loess model under different pressures with the extended DDA, and compared with indoor compression test to demonstrate the reliability of the numerical simulation. We found that, despite similar overall trends, the particle displacement of cemented sample was smaller than that of non-cemented sample. Vertical displacement of particles dominated regardless of some differences in the degree and direction of displacements. Major differences existed in different parts, i.e., upper particles underwent larger displacement, while lower particles witnessed smaller displacement.

关键词

结构性黄土 / 胶结作用 / 压缩特性 / 微观结构模型 / 非连续变形分析

Key words

structured loess / cementation / compression characteristics / microstructure model / DDA

引用本文

导出引用
张杰, 张常亮, 李萍, 李同录, 乔志甜, 李强. 结构性黄土压缩特性的微观非连续变形分析[J]. 长江科学院院报. 2021, 38(5): 123-130 https://doi.org/10.11988/ckyyb.20200506
ZHANG Jie, ZHANG Chang-liang, LI Ping, LI Tong-lu, QIAO Zhi-tian, LI Qiang. Microscopic Discontinuous Deformation of Structured Loess under Compression[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(5): 123-130 https://doi.org/10.11988/ckyyb.20200506
中图分类号: TU444   

参考文献

[1] 雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学:化学, 1987, 17(12):1309-1318.
[2] 赵景波.黄土的本质与形成模式[J].沉积学报,2003,21(2):198-204.
[3] 田堪良, 马 俊, 李永红. 黄土结构性定量化参数的探讨[J].岩石力学与工程学报,2011,30(增刊1):3179-3184.
[4] 沈珠江.土体结构性的数学模型:21世纪土力学的核心问题[J].岩土工程学报,1996,18(1):95-97.
[5] 蒲毅彬, 陈万业, 廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):52-57.
[6] 雷胜友,唐文栋.黄土在受力和湿陷过程中微结构变化的CT扫描分析[J].岩石力学与工程学报,2004,23(24):4166-4169.
[7] 朱元青, 陈正汉. 研究黄土湿陷性的新方法[J].岩土工程学报,2008,30(4):524-528.
[8] 谷天峰, 王家鼎, 郭 乐,等. 基于图像处理的Q3黄土的微观结构变化研究[J].岩石力学与工程学报,2011,30(增刊1):3185-3192.
[9] 陈 阳,李喜安,黄润秋,等.影响黄土湿陷性因素的微观试验研究[J].工程地质学报,2015,23(4):646-653.
[10] 郭培玺, 林绍忠. 粗粒料颗粒随机分布的数值模拟[J].长江科学院院报,2007,24(4):50-52,56.
[11] 郭培玺,林绍忠. 粗粒料力学特性的DDA数值模拟[J].长江科学院院报,2008,25(1):58-60,69.
[12] 张国新, 李广信, 郭瑞平. 不连续变形分析与土的应力应变关系[J].清华大学学报(自然科学版),2000,40(8):102-105.
[13] 郭龙骁, 张常亮, 杨德广等. 黄土单向压缩试验微观非连续变形分析[J].长江科学院院报,2017,34(3):80-84.
[14] GUO L, LI T, CHEN G, et al. A Method for Microscopic Unsaturated Soil-Water Interaction Analysis Based on DDA[J]. Computers and Geotechnics, 2019, 108: 143-151.
[15] 孙建中. 黄土湿陷的原因、因素与机制(理)[C]//中国工程建设标准化协会湿陷性黄土委员会全国黄土学术会议.兰州:中国建筑工业出版社,2001:146-151.
[16] SMALLEY I J, MARKOVI S B. Loessification and Hydroconsolidation: There is a Connection[J]. Catena, 2014, 117: 94-99.
[17] ROGERS C D F, DIJKSTRA T A, SMALLEY I J. Hydroconsolidation and Subsidence of Loess: Studies from China, Russia, North America and Europe: In Memory of Jan Sajgalik[J]. Engineering Geology, 1994, 37(2): 83-113.
[18] 王铁行,李彦龙,苏立君.黄土表面吸附结合水的类型和界限划分[J].岩土工程学报,2014,36(5):942-948.
[19] DERBYSHIRE E. Geological Hazards in Loess Terrain, with Particular Reference to the Loess Regions of China[J]. Earth-Science Reviews, 2001, 54(1/2/3):231-260.
[20] ROGERS C D F, SMALLEY I J. The Shape of Loess Particles[J]. The Science of Nature, 1993, 80(10): 461-462.
[21] DIBBEN S C,JEFFERSON I F,SMALLEY I J.The “Loughborough Loess” Monte Carlo Model of Soil Structure[J].Computers & Geosciences,1998,24(4):345-352.
[22] 张 杰,李 萍,李同录,等. 黄土沉积过程及微结构模型的非连续变形分析[J].工程地质学报.doi:10.13544/j.cnki.jeg.2019-517.
[23] HOOMANS B P B, KUIPERS J A M, BRIELS W J, et al. Discrete Particle Simulation of Bubble and Slug Formation in a Two-dimensional Gas-Fluidised Bed: A Hard-Sphere Approach[J]. Chemical Engineering Science, 1996, 51(1): 99-118.
[24] GB/T 50123—2019, 土工试验方法标准[S]. 北京:中国计划出版社,2019.
[25] TASHMAN L, MASAD E, PETERSON B, et al. Internal Structure Analysis of Asphalt Mixes to Improve the Simulation of Superpave Gyratory Compaction to Field Conditions (With Discussion)[J]. Maine Law Review, 2001, 61(1):490-498.

基金

国家自然科学基金重大项目(41790442);国家自然科学基金项目(41877242)

PDF(5743 KB)

Accesses

Citation

Detail

段落导航
相关文章

/