颗粒级配和初始干密度是粗粒土强度特性的两个重要影响因素。为建立粗粒土级配、初始干密度指标与强度指标之间的定量规律。首先,基于多重分形级配方程,推导了单位体积内大于某粒径的颗粒个数与多重分形维数、干密度之间的定量表达式,并将其称之为“骨架颗粒数密度指标”;接着,开展了4种不同级配和密度组合的粗粒土三轴固结排水剪切试验,初步得出结论:连续级配粗粒土的破坏剪应力与骨架颗粒数密度指标之间呈线性递增规律;最后,对该结论进行了大量文献数据验证研究。该结论不仅可为粗粒料填筑优化方案的比选提供参考,对粗粒土强度缩尺效应的研究亦有一定启发作用。
Abstract
Particle gradation and initial dry density are two crucial factors that influence the strength characteristics of coarse-grained soils. In this paper we aim to quantify the relationship between gradation and initial dry density index of coarse-grained soil and its strength index. Based on the formula process of multiple fractal stages, we derived a quantitative expression, termed as the “skeleton particle density index”, which relates the relationship between the number of particles larger than a certain size per unit volume and the multiple fractal dimensions and dry density. Subsequently, we carried out four triaxial consolidation drainage shear tests on coarse-grained soils with various combinations of gradation and density. The destructive shear stress of continuously graded coarse-grained soil exhibited a linear increase with the skeleton particle density index of the skeleton particle density index. Finally, we conducted extensive literature data verification studies to validate our findings. The obtained results not only provide reference for comparing and selecting optimal schemes for coarse-grained material filling but also offer significant insights into the study of the scale effect on the strength of coarse-grained soils.
关键词
连续级配粗粒土 /
多重分形维数 /
骨架颗粒数密度指标 /
大型三轴剪切试验 /
破坏剪应力
Key words
continuous gradation of coarse-grained soil /
multiple fractal dimensions /
density index of skeleton particle number /
large triaxial shear test /
shear stress at failure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李广信. 高等土力学[M]. 北京: 清华大学出版社, 2004.
[2] 赵晓菊, 凌 华, 傅 华, 等. 级配对堆石料颗粒破碎及力学特性的影响[J]. 水利与建筑工程学报, 2013, 11(4): 175-178, 202.
[3] 姜景山,程展林,左永振,等.材料状态对粗粒料力学特性影响的试验研究[J].岩土力学,2017,38(增刊2):131-137.
[4] 牟声远,王正中. 堆石料邓肯-张模型的参数敏感性与统计分析[J]. 中国农村水利水电, 2009(3): 97-100.
[5] 傅 华,陈生水,凌 华,等.高应力状态下堆石料工程特性试验研究[J].水利学报,2014,45(增刊2):83-89.
[6] 李凤鸣,卞富宗.两种粗粒土的比较试验[J].勘察科学技术,1991(2):25-29.
[7] VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and Modeling Two Rockfill Materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(3): 206-218.
[8] 胡黎明, 马 杰, 张丙印, 等. 粗粒料与结构物接触面力学特性缩尺效应[J]. 清华大学学报(自然科学版), 2007, 47(3): 327-330.
[9] 褚福永, 朱俊高, 翁厚洋, 等. 堆石料强度及变形特性缩尺效应试验[J]. 河海大学学报(自然科学版), 2019, 47(4): 381-386.
[10] 凌 华, 殷宗泽, 朱俊高,等. 堆石料强度的缩尺效应试验研究[J]. 河海大学学报(自然科学版), 2011, 39(5): 540-544.
[11] 李 翀,何昌荣,王 琛,等.粗粒料大型三轴试验的尺寸效应研究[J]. 岩土力学,2008,29(增刊1):563-566.
[12] OVALLE C, FROSSARD E, DANO C, et al. The Effect of Size on the Strength of Coarse Rock Aggregates and Large Rockfill Samples through Experimental Data[J]. Acta Mechanica, 2014, 225(8): 2199-2216.
[13] 孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255-261.
[14] 刘赛朝, 吴鑫磊, 徐卫卫, 等. 堆石料缩尺效应试验研究[J]. 人民长江, 2021, 52(1): 173-176, 217.
[15] 孙其诚, 金 峰. 颗粒物质的多尺度结构及其研究框架[J]. 物理, 2009, 38(4): 225-232.
[16] 孙其诚, 王光谦. 静态堆积颗粒中的力链分布[J]. 物理学报, 2008, 57(8): 4667-4674.
[17] 阎宗岭. 堆石体物理力学特性及其工程应用研究[D].重庆:重庆大学,2004.
[18] 王 涛, 刘斯宏, 宋迎俊, 等. 基于骨架孔隙比的土石混合料强度变形特性[J]. 岩土力学, 2020, 41(9): 2973-2983.
[19] MITCHELL J K,SOGA K. Fundamentals of Soil Behavior[M]. New York: Wiley, 2005.
[20] THEVANAYAGAM S.Intergrain Contact Density Indices for Granular Mixes—II: Liquefaction Resistance[J]. Earthquake Engineering and Engineering Vibration, 2007, 6(2): 135-146.
[21] 凌 华,傅 华,韩华强.粗粒土强度和变形的级配影响试验研究[J].岩土工程学报,2017,39(增刊1):12-16.
[22] 徐卫卫,石北啸,陈生水,等.孔隙率对堆石料强度与变形的影响规律[J].岩土工程学报,2018,40(增刊2):47-52.
[23] 高 盼. 不同级配堆石料力学性试验等效密度确定方法研究[D]. 武汉: 长江科学院, 2019.
[24] 长江科学院.奴尔水利枢纽工程沥青混凝土心墙坝筑坝材料试验及静、动力计算分析[R].武汉:长江科学院,2015.
[25] 长江科学院. 西藏拉洛水利枢纽工程施工期沥青混凝土心墙坝筑坝材料特性试验及二维渗流、应力变形静力计算分析[R].武汉:长江科学院,2018.
基金
中央级公益性科研院所基本科研业务费专项(CKSF2021459/YT,CKSF2021484/YT)