电渗联合化学溶液加固淤泥质软土试验研究

赵洪星

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (5) : 99-105.

PDF(1676 KB)
PDF(1676 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (5) : 99-105. DOI: 10.11988/ckyyb.20210567
岩土工程

电渗联合化学溶液加固淤泥质软土试验研究

  • 赵洪星
作者信息 +

Mechanism of Using Electroosmosis and Different Chemical Solutions to Reinforce Mucky Clay

  • ZHAO Hong-xing
Author information +
文章历史 +

摘要

采用自制室内试验装置,研究电渗联合化学溶液对淤泥质软土的排水固结效果。通过对比分析电流值、电渗排水量、抗剪强度和微观结构等方面的差异,进一步揭示了不同化学溶液对电渗固结效果的影响机理。试验结果表明:化学溶液的加入可以促进电渗排水,而小原子量、低价态离子的促进效果更为显著,在本次试验中Na+>Ca2+>Al3+;运动到阴极附近的Ca2+、Al3+离子可以参与反应生成胶结物质,增强了土颗粒间的黏结力,提高了阴极土体的抗剪强度,其中以Ca2+离子增强效果最明显,土体抗剪强度提高了3.5倍;而化学溶液的加入则会加速电极腐蚀和土体的酸碱化。

Abstract

A one-dimensional laboratory test program is performed to investigate the strengthening effect of electroosmosis incorporated anolyte on mucky clay. By comparing the differences in electroosmotic current, drainage, shear strength and microstructure of soil, the mechanism of various anolyte accelerating the electroosmotic dewatering is further revealed. The testing results show that the injection of chemical solution facilitates the electrochemical drainage. Cations with lower atomic weight and valence have more significant effect: Na+>Ca2+>Al3+. The Ca2+ and Al3+ cations migrated to cathodic region react with hydroxyl ion to produce cementing agent, which enhances the cohesion between soil particles and improves soil's shear strength. Ca2+ has the strongest improvement effect by enhancing the shear strength of the cathodic soil by as much as 350%. Moreover, the injection of chemical solutions will also accelerate electrode corrosion and induce larger variation of pH value.

关键词

淤泥质软土 / 电渗 / 化学溶液 / 抗剪强度 / 微观结构

Key words

mucky clay / electroosmosis / chemical solutions / shear strength / microstructure

引用本文

导出引用
赵洪星. 电渗联合化学溶液加固淤泥质软土试验研究[J]. 长江科学院院报. 2022, 39(5): 99-105 https://doi.org/10.11988/ckyyb.20210567
ZHAO Hong-xing. Mechanism of Using Electroosmosis and Different Chemical Solutions to Reinforce Mucky Clay[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 99-105 https://doi.org/10.11988/ckyyb.20210567
中图分类号: TU411   

参考文献

[1] 邱晨辰, 沈 扬, 励彦德, 等.EKG电极真空-电渗处理软黏土室内试验研究[J].岩土工程学报, 2017, 39(增刊1):251-255.
[2] ZHANG H, ZHOU G, ZHONG J. Effect of Nanomaterialsand Electrode Configuration on Soil Consolidation by Electroosmosis: Experimental and Modeling Studies[J]. RSC Advances, 2017, 7(20): 12103-12112.
[3] TUAN PA, JURATE V, MIKA S. Electro-dewatering of Sludge under Pressure and Non-pressure Conditions[J]. Environmental Technology, 2008, 29(10): 1075-1084.
[4] KALUMBA D, GLENDINNING S, ROGERS C D F,et al. Dewatering of Tunneling Slurry Waste Using Electrokinetic Geosynthetics[J]. Journal of Environmental Engineering ASCE, 2009, 135(11): 1227-1236.
[5] CASSAGANDE L. Electroosmosis in Soils[J]. Geotechnique, 1949, 1: 159-177.
[6] YOSHID A H, TOMOMI Y, MIDORI K. Evaluation of Suitable Material Properties of Sludge for Electroosmotic Dewatering[J]. Drying Technology, 2013, 31: 775-784.
[7] YANG Z, SU A, MUJUMDAR A S, LEE D J. Electroosmotic Flows in Sludge at Dewatering[J]. Drying Technology, 2010, 28: 1113-1117.
[8] LI X B, ZHAO R, FU H T,et al. Slurry Improvement by Vacuum Preloading and Electroosmosis[J]. Proceeding of Institution of Civil Engineers Geotechnical Engineering, 2018, 172(2): 1-36.
[9] 陈雄峰, 荆一凤, 吕 鑑,等. 电渗法对太湖环保疏浚底泥脱水干化研究[J]. 环境科学研究, 2006, 19(5):54-58.
[10] 程庆臣,孙永军,刘 伟,等.电渗技术在吹填泥袋坝固结中的应用研究[J].东北水利水电,2001,19(9):14-16.
[11] GLENDING S,LAMONT-BLACK J,JONES C J F P.Treatment of Sewage Sludge Using Electrokinetic Geosynthetics[J]. Journal of Hazardous Materials,2007,139(3):491-499.
[12] BERGADO D T, SASANAKUL I, HORPIBULSU S. Electroosmotic Consolidationof Soft Bangkok Clay Using Copper and Carbon Electrodes with PVD[J]. ASTM Geotechnical Testing Journal,2003, 26(3): 277-288.
[13] MICIC S,SHANG J Q,LO K Y,et al.Electrokinetic Strengthening of a Marine Sediment Using Intermittent Current[J].Canadian Geotechnical Journal,2001,38(2):287-302.
[14] MOHAMEDELHASSAN E, SHANG J Q. Effects of Electrode Materials and Current Intermitence in Electroosmosis[J]. Proceedings of the ICE ground Improvement, 2001, 5(1): 3-11.
[15] 龚晓南,焦 丹. 间歇通电下软黏土电渗固结性质试验分析[J]. 中南大学学报(自然科学版),2011, 42(6):1725-1730.
[16] 陈 卓,周 建,温晓贵,等.电极反转对电渗加固效果的试验研究[J]. 浙江大学学报,2013,47(9):1579-1584.
[17] ZHANG H, ZHOU G, WU J,et al. Mechanism for Soil Reinforcement by Electroosmosis in the Presence of Calcium Chloride[J]. Chemical Engineering Communications, 2016, 204(4): 424-433.
[18] 张 恒, 马勤国, 胡 赫,等. 使用氯化钙溶液加固淤泥质黏土的电渗试验研究[J]. 华南理工大学学报(自然科学版), 2019, 47(3):125-131.
[19] 刘飞禹,张 乐.外荷载变电压作用下软黏土电渗固结试验研究[J].上海大学学报(自然科学版),2014,20(2):228-238.
[20] 高志义, 张美燕, 张 健. 真空预压联合电渗法室内模型试验研究[J]. 中国港湾建设, 2000, 10(5):58-61.
[21] ZHANG H, HU H, LAI Y M, et al. Mechanism for Soil Reinforcement by Electroosmosis Incorporated with Nanoclay[J]. Drying Technology, 2019, doi: 10.1080/07373937.2018.1496095.
[22] 刘飞禹, 张志鹏, 王 军, 等. 分级真空预压联合间歇电渗法加固疏浚淤泥宏微观分析[J]. 岩石力学与工程学报, 2020, 33(9):168-179.
[23] 冯清鹏, 卜凡波, 彭 义, 等. 电极处加入CaCl2溶液对高岭土电渗试验的影响[J]. 长江科学院院报, 2017, 34(8):90-95.
[24] GRAY D H. Electrochemical Hardening of Clay Soils[J]. Geotechnique, 1970, 20(1): 81-93.
[25] BJERRUM L, MOUM J, EIDE O. Application of Electroosmosis to a Foundation Problem in a Norwegian Quick Clay[J]. Geotechnique, 1967, 17(3): 214-235.
[26] OU C Y,CHIEN S C,WANG Y G.On the Enhancementof Electroosmotic Soil Improvement by the Injection of Saline Solutions[J]. Drying Technology,2009,44:130-136.
[27] ALSHAWABKEH A,SHEAHAN T.Stabilizing Fine grained Soils by Phosphate Electrogrouting[J].Journal of the Transportation Research Board, 2002(1): 53-60.
[28] OTSUKI N,YODSUDJAI W,NISHIDA T. Feasibility Study on Soil Improvement Using Electrochemical Technique[J].Construction & Building Materials,2007,21(5):1046-1051.
[29] 陶燕丽,周 建,龚晓南,等. 间歇通电模式影响电渗效果的试验[J]. 哈尔滨工业大学学报, 2014, 46(8):78-83.
[30] CITEAU M, LARUE O, VOROBIEV E. Influence of Salt, pH and Polyelectrolyte on the Pressure Electro-Dewatering of Sewage Sludge[J]. Water Research, 2011, 45(6): 2167-2180.

基金

中铁十六局集团有限公司科研项目(17-C09)

PDF(1676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/