红黏土中胶体氧化物与黏土矿物之间的交互作用是影响土体微观结构与胀缩性的主要因素。采用选择性化学溶解法除去原状红黏土中存在的胶体氧化物,通过胀缩性试验、粒度分析、压汞、SEM等方法,探讨了胶体氧化物对土体微观结构和胀缩性的影响。试验结果表明:胶体氧化物以包膜形式附着在黏土矿物表面;去除胶体氧化物后土体微观结构发生了显著变化,表现为包膜消失导致土体结构连结变差、团聚现象减弱,颗粒分散程度增大,微孔减小和小孔增加。此外,去除胶体氧化物后土体相对密度、最优含水率、最大干密度、液塑性、自由膨胀率、线缩率等物理参数皆有所减小。研究成果正确认识了红黏土特殊的物理特性,丰富了红黏土相关基础理论。
Abstract
The interaction between colloidal oxides and clay minerals is the major factor affecting the microstructure, swelling, and shrinkage of red clay. In this paper, the colloidal oxides are removed by the selective chemical dissolution method. The effects of colloidal oxides on the microstructure and swelling shrinkage of red clay are explored via swelling shrinkage test, particle size analysis, mercury injection, and SEM. Results illustrate that the colloidal oxides adhere to the clay mineral surface in the form of an envelope. The removal of colloidal oxides significantly changes the microstructure of soil. Moreover, the disappearance of the coating leads to the deterioration of soil structure bonding, weakening of agglomeration, increase of particle dispersion, decrease of micropores, and increase of pores. In addition, physical parameters of soil (specific gravity, optimal water content, maximum dry density, liquid plasticity, free expansion rate, and linear shrinkage rate) decrease since the removal of colloidal oxide. The research findings offer scientific basis for correctly understanding the special physical characteristics and enriching related basic theories of red clay.
关键词
红黏土 /
胶体氧化物 /
微观结构 /
胀缩性
Key words
red clay /
colloidal oxides /
microstructure /
swelling-shrinkage property
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] OYELAMI C A, VAN ROOY J L. A Review of the Use of Lateritic Soils in the Construction/Development of Sustainable Housing in Africa: A Geological Perspective[J]. Journal of African Earth Sciences, 2016, 119: 226-237.
[2] 张先伟,孔令伟. 氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J]. 岩土工程学报,2014, 36(1): 65-74.
[3] 罗鸿禧. 游离氧化铁对红色粘土工程性质的影响[J]. 岩土力学,1987, 8(2): 29-36.
[4] ARIAS M, BARRAL M T, DIAZ-FIERROS F. Effects of Iron and Aluminium Oxides on the Colloidal and Surface Properties of Kaolin[J]. Clays and Clay Minerals, 1995, 43(4): 406-416.
[5] BARRAL SILVA M T, GUITIAN OJEA F. Iron Oxide Accumulations in Tertiary Sediments of the Roupar Basin, Galicia, NW Spain[J]. CATENA, 1991, 18(1): 31-43.
[6] 孔令伟,罗鸿禧,袁建新. 红粘土有效胶结特征的初步研究[J]. 岩土工程学报,1995, 17(5): 42-47.
[7] 程昌炳,陈 琼,刘少军,等. 土中胶结强度的微观研究[J]. 华中农业大学学报,1998, 17(2): 48-54.
[8] 罗鸿禧. 无定形物质对土的力学性质和结构的影响[J]. 岩土力学,1983, 4(1): 67-72.
[9] 王继庄. 游离氧化铁对红粘土工程特性的影响[J]. 岩土工程学报,1983, 5(1): 147-156.
[10] EHRLICH M, ALMEIDA M S S, CURCIO D. Hydro-Mechanical Behavior of a Lateritic Fiber-Soil Composite as a Waste Containment Liner[J]. Geotextiles and Geomembranes, 2019, 47(1): 42-47.
[11] 张瑶丹,陈 筠,施鹏超,等.碱处理红黏土的力学强度试验研究[J].长江科学院院报,2020,37(3):170-177.
[12] 施鹏超,陈 筠,王 麒,等. 细菌对红黏土抗剪强度的影响[J]. 长江科学院院报,2020, 37(1):95-99.
[13] 施 斌,王宝军,姜洪涛. 击实粘性土微结构特性的定量评价[J]. 科学通报,1996, 41(5): 438-441.
[14] CUISINIER O, AURIOL J-C, LE BORGNE T, et al. Microstructure and Hydraulic Conductivity of a Compacted Lime-Treated Soil[J]. Engineering Geology, 2011, 123(3): 187-193.
[15] AL-MUKHTAR M, KHATTAB S, ALCOVER J-F. Microstructure and Geotechnical Properties of Lime-Treated Expansive Clayey Soil[J]. Engineering Geology, 2012, 139/140: 17-27.
[16] MANAHILOH K N, MEEHAN C L. Determining the Soil Water Characteristic Curve and Interfacial Contact Angle from Microstructural Analysis of X-Ray CT Images[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, Doi: 10.1061/(ASCE)GT.1943-5606.0001677.
[17] TANG C, SHI B, LIU C, et al. Influencing Factors of Geometrical Structure of Surface Shrinkage Cracks in Clayey Soils[J]. Engineering Geology, 2008, 101(3/4): 204-217.
[18] 唐朝生,施 斌,刘 春,等. 黏性土在不同温度下干缩裂缝的发展规律及形态学定量分析[J]. 岩土工程学报,2007, 29(5): 743-749.
[19] 唐朝生,施 斌,刘 春,等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报,2007, 8(10): 1186-1193.
[20] ALBRECHT B A, BENSON C H. Effect of Desiccation on Compacted Natural Clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 67-75.
[21] BOYNTON S S, DANIEL D E. Hydraulic Conductivity Tests on Compacted Clay[J]. Journal of Geotechnical Engineering, 1985, 111(4): 465-478.
[22] MENGUE E, MROUEH H, LANCELOT L, et al. Mechanical Improvement of a Fine-Grained Lateritic Soil Treated with Cement for Use in Road Construction[J]. Journal of Materials in Civil Engineering, 2017, 29(11): 4017201-4017206.
[23] 朱建群,易 亮,龚 琰,等. 贵州红黏土的胀缩性与水敏性研究[J]. 湖南科技大学学报(自然科学版),2016, 31(4): 35-39.
[24] 唐朝生,崔玉军,TANG A M,等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报,2011, 33(8): 1271-1279.
[25] 彭慈德,常留成. 不同温度下红黏土胀缩性试验研究[J]. 长江科学院院报,2019, 36(7): 100-105.
[26] 谈云志,喻 波,刘晓玲,等. 压实红黏土失水收缩过程的孔隙演化规律[J]. 岩土力学,2015, 36(2): 369-375.
[27] 熊 毅. 土壤胶体:Ⅱ土壤胶体研究法[M]. 1983.
[28] 谈云志,孔令伟,郭爱国,等. 压实过程对红黏土的孔隙分布影响研究[J]. 岩土力学,2010, 31(5): 1427-1430.
[29] 牟春梅,韦瑜玺. NH3·H2O对桂林地区红黏土工程特性的影响试验研究[J]. 长江科学院院报,2020, 37(5): 113-119.
[30] 胡国成,章明奎. 氧化铁对土粒强胶结作用的矿物学证据[J]. 土壤通报,2002, 33(1): 25-27.
[31] 马 琳,王 清,原国红. pH对红土性质的影响[J]. 哈尔滨工业大学学报,2009, 41(10): 255-258.
[32] 牛 庚,孙德安,韦昌富,等. 游离氧化铁对红黏土持水特性的影响[J]. 岩土工程学报,2018, 40(12): 2318-2324.
基金
国家自然科学基金项目(42002280);贵州省科技计划项目(黔科合基础-ZK[2022]重点018)