为了探究滇中引水隧洞围岩的蠕变特性,采用实时高温常规三轴试验系统开展岩石的力学性能和蠕变试验。在建立岩石蠕变本构模型的基础上,根据蠕变试验曲线的特点,提出了一种确定蠕变参数的方法,并分析了不同应力水平下蠕变参数的变化规律,构建了蠕变参数与应力的关系。最后将各蠕变参数与应力之间的表达式代入蠕变本构模型中,得到修正的蠕变本构模型。结果表明:建立的蠕变模型不仅准确反映了衰减和稳定蠕变阶段的蠕变特征,而且克服了传统模型难以描述加速蠕变的缺点。同时,该方法确定的蠕变参数不仅可以反映应力对蠕变参数的影响,还可有效反映应力状态对蠕变变形规律的影响。
Abstract
Rock mechanics tests and creep tests were performed by using real-time high temperature conventional triaxial test system to probe into the creep characteristics of surrounding rock of water diversion tunnel in central Yunnan Province. On the basis of establishing the rock creep constitutive model, a method for determining the creep parameters is proposed according to the characteristics of creep test curve. The relationship between creep parameters and stress is established by analyzing the variation law of creep parameters under different stress levels. Finally, the modified creep constitutive model is obtained by substituting the expression between each creep parameter and stress into the creep constitutive model. Results demonstrate that the established creep model not only reflects the creep characteristics of decay and stable creep stages accurately, and also overcomes the deficiency of traditional model in describing accelerated creep. Moreover, the creep parameters determined by the proposed method reflect the influence of stress on creep parameters and also the influence of stress state on the regularity of creep deformation.
关键词
隧洞围岩 /
力学性能 /
蠕变试验 /
蠕变参数 /
应力状态 /
滇中引水隧洞
Key words
surrounding rock of tunnel /
mechanical properties /
creep test /
creep parameters /
stress state /
Central Yunnan Water Diversion Tunnel
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 尹光志,王登科,张东明,等. 两种含瓦斯煤样变形特性与抗压 强度的实验分析[J]. 岩石力学与工程学报,2009,28(2):410- 417.
[2] CHEN L, WANG C P, LIU J F, et al. A Damage-Mechanism-Based Creep Model Considering Temperature Effect in Granite[J]. Mechanics Research Communications, 2014, 56: 76-82.
[3] CRUDEN D M. The Form of the Creep Law for Rock under Uniaxial Compression[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 1971, 8(2): 105-126.
[4] MARANINI E, BRIGNOLI M. Creep Behaviour of a Weak Rock: Experimental Characterization[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(1): 127-138.
[5] 徐 鹏,杨圣奇. 循环加卸载下煤的黏弹塑性蠕变本构关系研究 [J]. 岩石力学与工程学报,2015,34(3):537-545.
[6] 张明珠,李慧芹,晏祥智.隧洞砂岩的温度-围压耦合时效性蠕变模型[J].水力发电学报,2021,40(8):124-131.
[7] 林韩祥,张强勇,张龙云,等.大埋深隧洞泥质粉砂岩的三轴蠕变试验与理论分析[J].中南大学学报(自然科学版),2021,52(5):1552-1561
[8] 韩佳伟. 深埋隧洞膨胀泥岩的流变特性及长期稳定性分析[D].石家庄:石家庄铁道大学,2021.
[9] SUN C, JIN C, WANG L, et al. Creep Damage Characteristics and Local Fracture Time Effects of Deep Granite[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(2): 1-18.
[10]WEI Er-jian, HU Bin, LI Jing, et al. Nonlinear Viscoelastic Plastic Creep Model of Rock Based on Fractional Calculus[J]. Advances in Civil Engineering, doi: 10.1155/2022/3063972.
[11]李祥春,张 良,李忠备,等. 不同瓦斯压力下煤岩三轴加载时蠕变规律及模型[ J]. 煤炭学报,2018,43(2):473-482.
[12]李亚丽,于怀昌,刘汉东. 三轴压缩下粉砂质泥岩蠕变本构模型研究[J].岩土力学,2012,33(7):2035-2040.
[13]刘文博,张树光,李若木.一种基于能量耗散理论的岩石加速蠕变模型[J].煤炭学报,2019,44(9):2741-2750.
[14]齐亚静,姜清辉,王志俭,等.改进西原模型的三维蠕变本构方程及其参数辨识[J].岩石力学与工程学报,2012,31(2):347-355.
[15]刘开云,薛永涛,周 辉.参数非定常的软岩非线性黏弹塑性蠕变模型[J].中国矿业大学学报,2018,47(4):921-928.
[16]何利军, 孔令伟, 吴文军, 等. 采用分数阶导数描述软黏土蠕变的模型[J]. 岩土力学, 2011, 32(增刊2): 239-243.
[17]曹文贵,袁靖周,王江营,等.考虑加速蠕变的岩石蠕变过程损伤模拟方法[J]. 湖南大学学报(自然科学版),2013,40(2):15-20.
[18]刘保国, 崔少东. 泥岩蠕变损伤试验研究[J]. 岩石力学与工程学报, 2010, 29(10): 2127-2133.
[19]朱杰兵, 汪 斌, 邬爱清. 锦屏水电站绿砂岩三轴卸荷流变试验及非线性损伤蠕变本构模型研究[J]. 岩石力学与工程学报, 2010, 29(3): 528-534.
[20]张树光,刘文博,陈 雷,等.基于力学参数时效性的非定常蠕变模型[J].中国矿业大学学报,2019,48(5):993-1002.
[21]阎 岩,王思敬,王恩志.基于西原模型的变参数蠕变方程[J].岩土力学,2010,31(10):3025-3035.
基金
云南省重大科技专项计划项目(202102AF080001)