采用纳米SiO2和碳酸钙晶须制备水泥基材料,利用SEM、XRD和TG-DSC等技术手段对水泥基材料的水化产物、微观结构和热稳定性等进行有效表征,并试验研究了双掺0%、1%、2%、3%、5%、10%的碳酸钙晶须和1%纳米SiO2保温水泥砂浆的力学性能和导热性能。研究结果表明:纳米-毫米两种尺度材料掺入水泥浆内部后,纳米SiO2与水泥水化产物Ca(OH)2晶体发生二次水化反应,生成C-S-H凝胶体,有效地填充水泥基体孔隙、细化水泥基内部孔径尺寸,碳酸钙晶须具备纤维和微粒双重作用,可以在水泥基中产生纤维的桥联效应,两者材料结合起来,可在水泥基内部形成密实网状絮凝结构;纳米SiO2和碳酸钙晶须掺入后可以提高砂浆的强度,3%碳酸钙晶须和1%纳米SiO2配制的保温水泥砂浆抗压和抗折强度分别为25.6 MPa和6.19 MPa,导热系数为0.456 7 W/(m·K),强度和导热性能兼顾。
Abstract
The hydration products,microstructure and thermal stability of cement-based materials prepared by mixing with nano-SiO2 and calcium carbonate whisker were effectively characterized by using SEM,XRD and TG-DSC.The mechanical properties and thermal conductivity of thermal-insulated cement mortar were also studied by adding 0%,1%,2%,3%,5% and 10% calcium carbonate whisker and 1% nano-SiO2.Test results revealed that by adding materials of nano-and-millimeter level scales,C-S-H gels were generated from the secondary hydration reaction between nano-SiO2 and Ca(OH)2 crystal,filling the voids in cement base and refining the pores in cement base.Moreover,calcium carbonate whisker has dual-function of fibers and particles,hence producing bridging effect in the cement based,forming a dense network flocculation structure inside the cement base.The strength of cement mortar can be improved by adding nano-SiO2 and calcium carbonate whisker.The compressive strength and flexural strength of thermal insulation cement mortar mixed with 3% calcium carbonate whisker and 1% nano-SiO2 is 25.6 MPa and 6.19 MPa,respectively,and the thermal conductivity is 0.456 7 W/(m·K).Both the strength and thermal conductivity are taken into consideration.
关键词
纳米SiO2 /
碳酸钙晶须 /
微观分析 /
力学性能 /
导热系数
Key words
nano-SiO2 /
calcium carbonate whisker /
microscopic analysis /
mechanical properties /
thermal conductivity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FEO L,ASCIONE F,PENNA R,et al.An Experimental Investigation on Freezing and Thawing Durability of High Performance Fiber Reinforced Concret[J].Composite Structures,2020,234(2):1-15.
[2] 林立安,李玉海,邓永刚.高性能纤维混凝土微观结构及其抗压强度研究[J].沈阳理工大学学报,2021,40(1):45-49,59.
[3] 张历彬.高性能纤维混凝土性能研究及应用[D].重庆:重庆大学,2008.
[4] 刘伟静.钢纤维混杂玄武岩纤维增强水泥砂浆的基本力学性能与增强机理试验研究[J].混凝土,2013(12):125-128.
[5] 高丹盈,李 晗.纤维纳米混凝土的微观增强机理与强度计算方法[J].建筑科学与工程学报,2015,32(5):47-55.
[6] 张 勤,巩稣稣,赵永胜,等.多尺度纤维复合增强水泥基材料的力学性能[J].土木与环境工程学报(中英文),2021,43(2):123-129.
[7] 金光淋,殷浚哲,于 洋,等.碳酸钙晶须掺量对水泥砂浆力学性能的影响研究[J].建筑结构,2020,50(增刊1):832-836.
[8] 郭小阳,唐 琪,黄成霞.碳酸钙晶须对油井水泥增强抗收缩机理及应用[J].钻井液与完井液,2015,32(5):66-68.
[9] 张文华,张仔祥,刘鹏宇,等.多尺度纤维增强超高性能混凝土的轴心抗拉和抗压行为[J].硅酸盐学报,2020,48(8):1155-1167.
[10]张 聪,曹明莉.多尺度纤维复合增强水泥基材料的力学性能试验[J].复合材料学报,2014,31(3):661-668.
[11]陈文怡,涂 浩.TG-DSC技术在水泥研究中的应用[J].分析仪器,2012(2):55-58.
[12]MULLER F A,GBURECK U,TOSHIHIRO K,et al.Whisker-reinforced Caleium Hosphate Cements[J].Communications of the American Ceramic Society,2007,90(11):3694-3697.
基金
安徽省高校自然科学研究重点项目(KJ2020A0899);安徽省高校学科拔尖人才学术资助项目(gxbjZD2022111)