作为我国南水北调工程的重要组成部分,南水北调中线工程是缓解我国黄淮海平原水资源严重短缺、优化配置水资源的重大战略性基础工程。汉江上游流域作为南水北调中线工程水源地,其气候变化及人类活动改变了天然水文情势。降水、径流等水文要素时空变化规律研究是南水北调中线工程科学规划和实施的重要基础。本研究基于数理统计检验及水文模型法,开展汉江上游流域水文要素演变规律及归因分析。结果表明,降水序列存在下降趋势及向下跳跃性突变(突变点1990年),但趋势性及跳跃性均不显著;与降水一致,径流序列存在下降趋势及向下跳跃性突变(突变点1990年),径流下降趋势显著。采用水文模型法进行了径流变化归因分析,汉江上游流域1991-2016年多年平均径流量较1962-1990年减少了81.2亿m3,其中受气候变化影响约占43.2%,受人类活动影响约占56.8%。本研究成果可为南水北调中线工程运行管理等工作提供科学依据。
Abstract
The middle route of the South-to-North Water Diversion Project is an important part of the National South-to-North Water Diversion Project, and is a major strategic basic project to ease the serious shortage of water resources in Huanghuaihai Plain and optimize the allocation of water resources. As the water source region of the middle route of the South-to-North Water Diversion Project, climate change and human activities in the upper reaches of the Hanjiang River Basin have changed the natural hydrological situation. Research on the temporal and spatial variation of hydrological elements such as precipitation and runoff is an important basis for the scientific planning and implementation of the middle route of the South-to-North Water Diversion Project. Based on the mathematical statistics and hydrological model methods, this study carried out the variation and attribution analysis of the hydrological elements in the upper reaches of the Hanjiang River Basin. It is demonstrated that both the precipitation and runoff series have been detected with decreasing trends, and abrupt change points are also detected for both series in the year of 1990. Only the decreasing trend of the runoff is significant. The annual average runoff in the upper reaches of the Hanjiang River Basin during 1991-2016 decreased by 8.12 billion m3 compared with 1962-1990. About 43.2% of the deficit are affected by climate change, and about 56.8% are affected by human activities. It is concluded that the research results of this study can provide a scientific basis for the operation and management of the middle route of the South-to-North Water Diversion Project.
关键词
南水北调 /
气候变化 /
趋势分析 /
变点分析 /
水文模型
Key words
the South-to-North Water Diversion Project /
climate change /
trend examination /
change point examination /
hydrological model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 邓鹏鑫, 邴建平, 贾建伟, 等. 汉江流域1956-2016年汛期降水时空演变格局[J]. 长江流域资源与环境, 2018, 27(9): 2132-2141.
[2] 陈华, 郭生练, 郭海晋, 等. 汉江流域1951-2003年降水气温时空变化趋势分析[J]. 长江流域资源与环境, 2006, 15(3): 340-345.
[3] 靳俊芳, 殷淑燕, 庞奖励. 近60a来汉江上游极端降水变化研究——以安康地区为例[J]. 干旱区研究, 2014, 31(6): 1061-1067.
[4] 任利利, 殷淑燕, 靳俊芳. 1960-2011年汉江上游降水量变化特征和区域差异[J]. 中国农业气象, 2014, 35(4): 365-372.
[5] 夏军, 马协一, 邹磊, 等. 气候变化和人类活动对汉江上游径流变化影响的定量研究[J]. 南水北调与水利科技, 2017, 15(1): 1-6.
[6] 范杰. 南水北调中西线工程对水源区水资源影响及对策[J]. 人民长江, 2014, 45(7): 23-26, 35.
[7] Mittchell JM, Dzerdzeevskii B, Flohn H, et al.Climate Change[M]. WMO Technical Note No. 79, World Meteorological Organization, 1966.
[8] Dou L, Huang MB, Yang H.Statistical assessment of the impact of conservation measures on streamflow responses in a watershed of the Loess Plateau, China[J]. Water Resources Management, 2009, 23(10): 1935-1949.
[9] 徐宗学, 刘浏. 太湖流域气候变化检测与未来气候变化情景预估[J]. 水利水电科技进展, 2012, 32(1): 1-7.
[10] 章诞武, 丛振涛, 倪广恒. 基于中国气象资料的趋势检验方法对比分析[J]. 水科学进展, 2013, 24(4): 490-496.
[11] 张建云, 章四龙, 王金星, 等. 近50年来中国六大流域年际径流变化趋势研究[J]. 水科学进展, 2007, 18(2): 230-234.
[12] Pettitt A.A nonparametric approach to the change point problem[J]. Applied Statistics, 1979, 28: 126-135.
[13] 杨大文, 张树磊, 徐翔宇. 基于水热耦合平衡方程的黄河流域径流变化归因分析[J]. 中国科学: 技术科学, 2015, 45(10): 1024-1034.
[14] 杜涛. 气候变化背景下非一致性设计洪水流量研究[D]. 武汉:武汉大学, 2016.
[15] Thornthwaite CW.An approach toward a rational classification of climate[J]. Geogr. Rev., 1948, 38(1): 55-94.
[16] Thornthwaite CW, Mather JR.The water balance[J]. Publ. Climatol. Lab. Climatol. Drexel Inst. Technol., 1955, 8(1): 1-104.
[17] 李帅, 杜涛. 基于月水量平衡模型的年径流模拟方法设计及应用[J]. 长江科学院院报, 2022, 39(3): 21-26.
[18] 吴迪, 郭家力, 向晓莉, 等. 降水径流特征变化对月水量平衡模型模拟精度及参数的影响[J]. 长江科学院院报, 2019, 37(7): 41-46, 52.
[19] 熊立华, 郭生练, 付小平, 等. 两参数月水量平衡模型的研制和应用[J]. 水科学进展, 1996, 7(增刊): 80-86.
[20] 胡庆芳, 王银堂, 刘克琳, 等. 基于改进的两参数月水量平衡模型的月径流模拟[J]. 河海大学学报(自然科学版), 2007, 35(6): 638-642.
[21] Nash JE, Sutcliffe JV.River flow forecasting through conceptual models[J]. Journal of Hydrology, 1970, 10: 282-290.
[22] Duan Q, Gupta VK, Sorooshian S.Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications, 1993, 76(3): 501-521.
[23] 张洪刚, 王辉, 徐德龙, 等. 汉江上游降水与径流变化趋势研究[J]. 长江科学院院报, 2007, 24(5): 27-30.
基金
国家重点研发计划(2019YFC0408903); 长江水科学研究联合基金(U2240201)