汾河二坝—义棠段液压坝群对河道冲淤变化影响的数值研究

张小雅, 任春平, 杨帆

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 16-23.

PDF(10057 KB)
PDF(10057 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 16-23. DOI: 10.11988/ckyyb.20220501
河湖保护与治理

汾河二坝—义棠段液压坝群对河道冲淤变化影响的数值研究

  • 张小雅, 任春平, 杨帆
作者信息 +

Numerical Study on Influence of Hydraulic Lifting Dam Group on Variation of Channel Erosion and Deposition in the Erba-Yitang Segment of Fenhe River

  • ZHANG Xiao-ya, REN Chun-ping, YANG Fan
Author information +
文章历史 +

摘要

在中小河流中连续修建多座液压坝,会对河道水动力及泥沙冲淤过程产生较大影响,液压坝群不同的运行方案导致河道冲淤变化特性也有所不同。针对此问题,基于Delft3D FM软件,选取了4场典型洪水过程,对汾河二坝—义棠段进行二维水沙数值模拟,在设定的4种液压坝群运行方案下,研究了液压坝群对河道冲淤变化特性的影响,为液压坝群在汾河中游的调度提供参考。研究结果表明:对于4场洪水情况下方案1—方案4,在模拟时段末,14#坝的坝前水深分别约为0.5~1.4、1.3~2.8、0.6~1.8、0.5~1.6 m,坝后局部流速最大分别约为1.5~2.5、2.0~6.0、2.0~3.0、2.0~2.5 m/s;从河道冲淤变化统计来看,泥沙冲淤范围分别约为-0.5~1.4、-0.3~1.9、-0.5~1.6、-0.5~1.5 m;河道泥沙淤积总量变化范围分别约为(4.9~242.3)万、(5.3~323.5)万、(5.0~252.5)万、(4.95~245.1)万m3。所得结论如下:液压坝全部运行时对水动力场和床面高程变化影响最大;4场洪水情况下,液压坝全部运行时泥沙淤积量约为无坝运行时的1.08~1.36倍。

Abstract

Building continuous hydraulic lifting dams in small and medium-sized rivers will affect the hydrodynamics and sediment erosion and deposition process of the river. The variation characteristics of river erosion and deposition resulting from different combined operation schemes of hydraulic lifting dams also differ. To address this issue, four typical flood processes were selected for a 2D numerical simulation of water and sediment dynamics in Fenhe River (Erba-Yitang segment) using Delft3D FM model. Under the four operation schemes of hydraulic lifting dam group, the influence of hydraulic lifting dam group on the variation characteristics of erosion and deposition of river channel was analyzed. The findings provide valuable insights for the scheduling of hydraulic lifting dam groups in the midstream of Fenhe River. Results reveal that, under the schemes 1-4 in four flood scenarios, the water depth in front of dam 14# ranges from approximately 0.5 to 1.4 m, 1.3 to 2.8 m, 0.6 to 1.8 m, and 0.5 to 1.6 m, respectively, at the end of the simulation period. The maximum local velocity behind the dam is approximately 1.5-2.5 m/s, 2.0-6.0 m/s, 2.0-3.0 m/s, and 2.0-2.5 m/s, respectively. The range of erosion and deposition is approximately -0.5 to 1.4 m, -0.3 to 1.9 m, -0.5 to 1.6 m, and -0.5 to 1.5 m, respectively. The total amount of sediment deposition in the river reaches approximately 4.9×104 to 242.3×104 m3, 5.3×104 to 323.5×104 m3, 5.0×104 to 252.5×104 m3, and 4.95×104 to 245.1×104 m3, respectively. The conclusions are as follows: hydraulic lifting dams exhibit the greatest influence on the hydrodynamic field and the change in bed elevation when operating at full capacity. Moreover, the sediment deposition volumes of hydraulic lifting dams are approximately 1.08 to 1.36 times that of non-dam operation under the four flood scenarios.

关键词

泥沙冲淤 / Delft3D FM软件 / 液压坝 / 数值模拟 / 汾河中游

Key words

erosion and deposition process / Delft3D FM software / hydraulic lifting dam / numerical simulation / midstream of Fenhe River

引用本文

导出引用
张小雅, 任春平, 杨帆. 汾河二坝—义棠段液压坝群对河道冲淤变化影响的数值研究[J]. 长江科学院院报. 2023, 40(8): 16-23 https://doi.org/10.11988/ckyyb.20220501
ZHANG Xiao-ya, REN Chun-ping, YANG Fan. Numerical Study on Influence of Hydraulic Lifting Dam Group on Variation of Channel Erosion and Deposition in the Erba-Yitang Segment of Fenhe River[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 16-23 https://doi.org/10.11988/ckyyb.20220501
中图分类号: TV6    TV8   

参考文献

[1] 钱 宁, 张 仁,周志德. 河床演变学[M]. 北京: 科学出版社, 1987.
[2] 倪晋仁, 刘元元. 论河流生态修复[J]. 水利学报, 2006, 37(9): 1029-1037, 1043.
[3] LAKS I. Mapping of Floodplain Retention and Active Flow Area in 1D Models for Large and Regional-Scale Hydrodynamic Modeling[J]. Journal of Hydrologic Engineering, 2019, 24(3): 04019001.
[4] BAO L, LI X, SU J. Alteration in the Potential of Sediment Phosphorus Release along Series of Rubber Dams in a Typical Urban Landscape River[J]. Scientific Reports, 2020, 10: 2714.
[5] KUMAR B, KADIA S, AHMAD Z. Sediment Movement over Type a Piano Key Weirs[J]. Journal of Irrigation and Drainage Engineering, 2021, 147(6): 04021018.
[6] CASSERLY C M, TURNER J N, O’SULLIVAN J J, et al. Impact of Low-Head Dams on Bedload Transport Rates in Coarse-Bedded Streams[J]. Science of the Total Environment, 2020, 716: 136908.
[7] CHANDESRIS A,VAN LOOY K,DIAMOND J S,et al.Small Dams Alter Thermal Regimes of Downstream Water[J].Hydrology and Earth System Sciences,2019,23(11):4509-4525.
[8] MAGILLIGAN F J, ROBERTS M O, MARTI M, et al. The Impact of Run-of-River Dams on Sediment Longitudinal Connectivity and Downstream Channel Equilibrium[J]. Geomorphology, 2021, 376: 107568.
[9] PEARSON A J, PIZZUTO J. Bedload Transport over Run-of-River Dams, Delaware, U.S.A[J]. Geomorphology, 2015, 248: 382-395.
[10] 张 晨, 于 昊, 于若兰, 等. 不同洪水重现期下橡胶坝调控对洪水风险的影响[J]. 水科学进展, 2021, 32(3): 427-437.
[11] 史鹏飞. 汾河流域干流蓄水工程液压坝汛期安全调度[J]. 中国防汛抗旱, 2018, 28(12): 90-92.
[12] 张 靖, 沈欣菲, 周升龙, 等. 橡胶坝塌坝最大泄流量快速估算方法[J]. 长江科学院院报, 2020, 37(4): 62-66.
[13] 孙东坡, 刘明潇, 张晓雷, 等. 冲积性河流河床冲淤调整对洪水泥沙过程的响应: 以黄河游荡型河段为例[J]. 水科学进展, 2014, 25(5): 668-676.
[14] CHURCH M, FERGUSON R I. Morphodynamics: Rivers beyond Steady State[J]. Water Resources Research, 2015, 51(4): 1883-1897.
[15] 周 宇, 钱红露, 曹志先, 等. 冲积河流分级恒定水沙数学模型的适用性研究[J]. 武汉大学学报(工学版), 2018, 51(5): 377-382, 408.
[16] 雷文韬, 夏军强, 谈广鸣. 考虑粘性泥沙运动的黄河口二维水沙输移数学模型[J]. 武汉大学学报(工学版), 2013, 46(4): 430-436, 457.
[17] 李 季, 曹志先, PENDER Gareth, 等. 明渠挟沙水流双层积分模式的双曲性分析[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 44-56.
[18] CAO Z X, HU P, PENDER G, et al. Non-capacity Transport of Non-uniform Bed Load Sediment in Alluvial Rivers[J]. Journal of Mountain Science, 2016, 13(3): 377-396.
[19] 任春平,李海军,梁荣荣.汾河中游液压坝群对洪水演进的影响[J].水电能源科学,2020,38(2):76-79.
[20] NI Y, CAO Z, QI W, et al. Morphodynamic Processes in Rivers with Cascade Movable Weirs - A Case Study of the Middle Fen River[J]. Journal of Hydrology, 2021, 603: 127133.
[21] Deltares.D-Flow FM User Manual[K]. The Netherlands: Deltares, 2019.
[22] 梁述杰, 贾小军. 汾河泥沙变化研究[J]. 山西水利科技, 2004(1): 47-49.
[23] HU K, CHEN Q, WANG H, et al. Numerical Modeling of Salt Marsh Morphological Change Induced by Hurricane Sandy[J]. Coastal Engineering, 2018, 132: 63-81.
[24] WILLMOTT C J. On the Validation of Models[J]. Physical Geography, 1981, 2(2): 184-194.

基金

水利工程安全与仿真国家重点实验室开放基金项目(HESS-2006);山西省自然科学基金面上项目(202103021224116)

PDF(10057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/