为研究冻融循环影响下路基黏土动态回弹模量的变化规律,开展了不同初始含水率、压实度、冻融循环次数、偏应力及围压条件下的动三轴试验。结果表明:路基黏土的动态回弹模量随初始含水率和偏应力的增加而减小,而与压实度及围压均呈正相关关系;冻融作用导致动态回弹模量发生衰减,而经历5次冻融循环后其值基本稳定。基于此,建立了全面考虑冻融循环影响、物理状态及应力条件的路基黏土动态回弹模量回归模型,预测效果较好。
Abstract
Dynamic triaxial tests under different deviatoric stresses and confining pressures were carried out to investigate the variations of dynamic resilient modulus of subgrade clay of varied initial moisture content and compaction degree under different freeze-thaw cycles.Results demonstrate that the dynamic resilient modulus of subgrade clay declines with the rising of initial moisture content and deviator stress,but is positively correlated with the degree of compaction and confining pressure.In the mean time,dynamic resilient modulus attenuates under freeze-thaw action,but remains stable after five freeze-thaw cycles.Furthermore,an effective regression model for predicting the dynamic resilient modulus of subgrade clay was established in consideration of the influence of freeze-thaw cycles,physical state and stress conditions.
关键词
黏土 /
冻融循环次数 /
动态回弹模量 /
演变规律 /
影响因素 /
预估模型
Key words
clay /
freeze-thaw cycles /
dynamic resilient modulus /
evolution rule /
influencing factors /
prediction model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SEED H B,CHAN C,LEE C E.Resilience Characteristics of Subgrade Soils and Their Relation to Fatigue Failures in Asphalt Pavements[C]∥International Conference on the Structural Design of Asphalt Pavements Supplement,University of Michigan,USA,August 20,1962:611-636.
[2] LIU X L,ZHANG X M,WANG H,et al.Laboratory Testing and Analysis of Dynamic and Static Resilient Modulus of Subgrade Soil under Various Influencing Factors[J].Construction and Building Materials,2019,195:178-186.
[3] 李志勇,董 城,邹静蓉,等.湘南地区红黏土动态回弹模量试验与预估模型研究[J].岩土力学,2015,36(7):1840-1846.
[4] ZHANG J H,PENG J H,LIU W Z,et al.Predicting Resilient Modulus of Fine-grained Subgrade Soils Considering Relative Compaction and Matric Suction[J].Road Materials and Pavement Design,2019(1):1-13.
[5] MOOSSAZADEH J,WITCZAK M W.Prediction of Subgrade Moduli for Soil that Exhibits Nonlinear Behavior[J].Transportation Research Record,1981,14(8):23-35.
[6] CHRISTOFFERSEN J,MEHRABADI M M,NEMAT-NASSER S.A Micromechanical Description of Granular Material Behavior[J].Journal of Applied Mechanics,1981,48(2):339-344.
[7] LYTTON R L,UZAN J,FERNANDO E G,et al.Development and Validation of Performance Prediction Models and Specifications for Asphalt Binders and Paving Mixes[R].Washington D.C.,USA:National Academy of Sciences,1993.
[8] QI J L,MA W,SONG C X.Influence of Freeze-Thaw on Engineering Properties of a Silty Soil[J].Cold Regions Science and Technology,2008,53(3):397-404.
[9] 宋金华,李博楠,王 亮,等.冻融循环作用下石灰改良土路基填料的动力特性研究[J].重庆交通大学学报(自然科学版),2018,37(2):47-54.
[10] TIAN S,TANG L,LING X Z,et al.Cyclic Behaviour of Coarse-grained Materials Exposed to Freeze-Thaw Cycles:Experimental Evidence and Evolution Model[J].Cold Regions Science and Technology,2019,167:102815.
[11] 杨 俊,袁 凯,张国栋,等.干湿循环对风化砂改良膨胀土回弹模量影响研究[J].长江科学院院报,2015,32(11):40-44,51.
[12] 刘昭希,王 军,宗全利,等.含水率变化对荆江河岸黏性土体力学特性的影响[J].长江科学院院报,2019,36(4):32-38.
[13] 吴小文.冻融循环和动荷载耦合作用下路基土力学特性试验研究[D].武汉:湖北工业大学,2019.
[14] ZHAO Y,LU Z,YAO H L,et al.Experimental Study of Dynamic Resilient Modulus of Subgrade Soils under Coupling of Freeze-Thaw Cycles and Dynamic Load[J].Journal of Central South University,2020,27(7):2043-2053.