某冻胀敏感性粉质黏土冻结过程物理力学特性试验

胡坤, 高兆国, 王少伟, 杨兆, 吴炎

长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 127-132.

PDF(7344 KB)
PDF(7344 KB)
长江科学院院报 ›› 2023, Vol. 40 ›› Issue (8) : 127-132. DOI: 10.11988/ckyyb.20220313
岩土工程

某冻胀敏感性粉质黏土冻结过程物理力学特性试验

  • 胡坤1,2, 高兆国3, 王少伟1, 杨兆1, 吴炎4
作者信息 +

Experimental Study on Physical and Mechanical Properties of a Frost Susceptible Silty Clay in Freezing Processs

  • HU Kun1,2, GAO Zhao-guo3, WANG Shao-wei1, YANG Zhao1, WU Yan4
Author information +
文章历史 +

摘要

针对寒区建设工程在土体冻结作用下的地基与基础稳定性问题,采用冻胀敏感性粉质黏土开展了土体冻结过程中的物理力学特性试验研究,获得了起始冻胀含水率、冻胀力、高温冻土抗剪强度等参数及其变化规律。主要结论如下:当土体含水率小于起始冻胀含水率时产生冻缩现象,由土骨架遇冷收缩和孔隙水相变膨胀共同作用所致;不同含水率条件下,土样冻结竖向位移经时变化曲线分为“冻缩”“冻缩-回弹”“冻缩-冻胀”3种类型;冻胀力经时变化曲线受温度场发展的影响分为快速增长和稳定增长2个阶段;冻胀力随冻结温度的降低而增大,利用分凝势理论进行分析,土体主动区温度梯度增大是冻胀力增大的原因;与常温土样相比,-3 ℃条件下的某冻结粉质黏土的黏聚力由7.34 kPa增加到29.56 kPa,内摩擦角由6.40°增加到9.18°,但其剪应力变化曲线并没有表现出低温冻土常见的脆性破坏,而是呈现应变硬化特征。

Abstract

To address the issue of foundation stability in construction engineering in cold regions, an experimental study was conducted to investigate the physical and mechanical properties of a frost susceptible silty clay in freezing process. Parameters such as the critical water content for frost heaving, frost heave forces, and shear strength of warm frozen soils were determined. The results indicate that frost shrinkage occurs when the water content of soil samples is below the critical water content for frost heaving. This phenomenon is attributed to the combined effect of frost shrinkage of the soil skeleton and phase transformation of pore water. The vertical displacement curves of soil samples exhibit three types with varying water content: frost shrinkage, frost shrinkage followed by rebound, and frost shrinkage followed by frost heave. The curve of frost heave forces can be divided into two stages, namely rapid growth and stable growth, due to the development of the temperature field. The frost heave force increases as the freezing temperature decreases. The increase in temperature gradient within the active zone of freezing soils, based on the theory of segregation potential, is the cause of higher frost heave forces. When compared to soil samples at normal temperature, the cohesion of frozen silty clay at -3℃ increased from 7.34 kPa to 29.56 kPa, and the internal friction angle increased from 6.40° to 9.18°. However, the shear stress curves did not exhibit brittle failure of frozen soils, but rather displayed characteristics of strain hardening.

关键词

粉质黏土 / 高温冻土 / 起始冻胀含水率 / 冻胀力 / 抗剪强度

Key words

silty clay / warm frozen soils / critical water content for frost heaving / frost heaving force / shear strength

引用本文

导出引用
胡坤, 高兆国, 王少伟, 杨兆, 吴炎. 某冻胀敏感性粉质黏土冻结过程物理力学特性试验[J]. 长江科学院院报. 2023, 40(8): 127-132 https://doi.org/10.11988/ckyyb.20220313
HU Kun, GAO Zhao-guo, WANG Shao-wei, YANG Zhao, WU Yan. Experimental Study on Physical and Mechanical Properties of a Frost Susceptible Silty Clay in Freezing Processs[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 127-132 https://doi.org/10.11988/ckyyb.20220313
中图分类号: TU443   

参考文献

[1] 吕长霖.一维冻结条件下土体冻胀与基础水平冻胀力试验研究[D].徐州:中国矿业大学,2018.
[2] CHOI C H, KO S G.A Study for Predicting Adfreeze Bond Strength from Shear Strength of Frozen Soil[J]. Journal of the Korean Geotechnical Society, 2011, 27(10): 13-23.
[3] CHRIST M, KIM Y C, PARK J B.The Influence of Temperature and Cycles on Acoustic and Mechanical Properties of Frozen Soils[J]. KSCE Journal of Civil Engineering, 2009, 13(3): 153-159.
[4] QIN Y,ZHANG J,ZHENG B,et al.Experimental Study for the Compressible Behavior of Warm and Ice-Rich Frozen Soil under the Embankment of Qinghai-Tibet Railroad[J].Cold Regions Science and Technology,2009,57(2/3):148-153.
[5] ARENSON L U, SPRINGMAN S M. Triaxial Constant Stress and Constant Strain Rate Tests on Ice-Rich Permafrost Samples[J]. Canadian Geotechnical Journal, 2005, 42(2): 412-430.
[6] 刘 凯, 张远芳, 张运海, 等. 冻融循环条件下亚氯盐渍土盐冻胀试验研究[J]. 长江科学院院报, 2018, 35(5):93-96, 102.
[7] 应 赛, 周凤玺, 文 桃, 等. 硫酸盐渍土降温过程中的盐胀与冻胀特性[J].长江科学院院报,2021, 38(6): 116-122.
[8] 马 巍,王大雁.冻土力学[M].北京:科学出版社,2014: 53-54.
[9] 王 宁, 王 清, 霍珍生, 等.盐分与压实度对盐渍土起始冻胀含水率的影响[J].工程地质学报,2016, 24(5): 951-958.
[10] 胡 坤.冻土水热耦合分离冰冻胀模型的发展[D].徐州:中国矿业大学,2011.
[11] 张艳鸽.吉林省西部盐渍土的水-热-物质迁移转化及其冻胀特性研究[D].长春:吉林大学,2011.
[12] 田亚护,胡康琼,邰博文,等.不同因素对排水沟渠水平冻胀力的影响[J].岩土力学,2018,39(2):553-560.
[13] 王建州, 刘书幸, 周国庆, 等.深季节冻土地区基坑工程水平冻胀力试验研究[J].中国矿业大学学报,2018, 47(4): 815-821.
[14] 陈军浩,张世银.不同外边界条件下冻结黏土冻胀力试验研究[J].福建工程学院学报,2015,13(4):313-316.
[15] 赵再昆.黄土冻胀特性和法向冻胀力试验研究[D].西安:西安建筑科技大学,2019.
[16] 黄旭斌, 周 恒, 狄圣杰, 等.融化和冻结状态下土及混凝土/土界面剪切特性试验研究[J].中南大学学报(自然科学版),2021, 52(11): 4137-4147.
[17] 杨天翼.非饱和季冻土抗剪强度研究及其工程应用[D].长春:吉林建筑大学,2020.
[18] 朱 磊, 谢 强, 任新红, 等.川藏线季节性粗颗粒冻土抗剪强度特性试验研究[J].铁道学报,2018, 40(3): 107-111.
[19] 魏 尧.冻融循环对高含水率黄土物理力学特性的影响分析[D].西安:西安科技大学,2016.
[20] 刘世伟, 张建明. 高温冻土物理力学特性研究现状[J].冰川冻土,2012, 31(1): 120-129.
[21] HAYNES F D.Strength and Deformation of Frozen Silt[C]//The National Research Council of Canada. Proceedings of the Third International Conference on Permafrost, Edmonton, Alberta, Canada, July 10-13,1978: 655-661.
[22] AKAGAWA S,NISHISATO K.Tensile Strength of Frozen Soil in the Temperature Range of the Frozen Fringe[J]. Cold Regions Science and Technology,2009,57(1):13-22.
[23] SHIELDS D H, DOMASCHUK L, MAN C-S, et al. The Deformation Properties of Warm Permafrost[M]//Strength Testing of Marine Sediments: Laboratory and In-Situ Measurements. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2008: 465-473.
[24] ZHOU G, HU K, ZHAO X, et al. Laboratory Investigation on Tensile Strength Characteristics of Warm Frozen Soils[J]. Cold Regions Science and Technology, 2015, 113: 81-90.
[25] KONRAD J-M, MORGENSTERN N R. The Segregation Potential of a Freezing Soil[J]. Canadian Geotechnical Journal, 1981, 18(4): 482-491.
[26] 朱锋盼. 高温冻土剪切力学特性试验研究[J].成都理工大学学报(自然科学版),2021, 48(1): 121-128.

基金

国家自然科学基金面上项目(41271096);中国博士后科学基金面上资助项目(2021M703507);江苏省产学研合作项目(BY2021208);深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1704);江苏省高校哲学社会科学研究一般项目(2022SJYB1316)

PDF(7344 KB)

Accesses

Citation

Detail

段落导航
相关文章

/