长江科学院院报 ›› 2022, Vol. 39 ›› Issue (4): 85-90.DOI: 10.11988/ckyyb.20210032

• 工程安全与灾害防治 • 上一篇    下一篇

基于SSA-DBSCAN的边坡安全监测数据粗差探测方法

蒋齐嘉1, 蒋中明1,2, 唐栋1,3, 曾景明1   

  1. 1.长沙理工大学 水利工程学院,长沙 410114;
    2.水沙科学与水灾害防治湖南省重点实验室,长沙 410114;
    3.洞庭湖水环境治理与生态修复湖南省重点实验室,长沙 410114
  • 收稿日期:2021-02-10 修回日期:2021-05-12 出版日期:2022-04-01 发布日期:2022-04-14
  • 通讯作者: 蒋中明(1969-),男,重庆璧山人,教授,博士,博士生导师,主要研究方向为岩土工程。E-mail:zzmmjiang@163.com
  • 作者简介:蒋齐嘉(1994-),男,湖南长沙人,硕士研究生,主要研究方向为监测数据处理、滑坡预测预报。E-mail:jqjcss@126.com

Gross Error Detection of Slope Safety Monitoring Data Based on SSA-DBSCAN

JIANG Qi-jia1, JIANG Zhong-ming1,2, TANG Dong1,3, ZENG Jing-ming1   

  1. 1. School of Hydraulic Engineering, Changsha University of Science & Technology,Changsha 410114,China;
    2. Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha 410114, China;
    3. Hunan Provincial Key Laboratory of Aquatic Eco-environmental Control and Restoration of Dongting Lake, Changsha 410114, China
  • Received:2021-02-10 Revised:2021-05-12 Published:2022-04-01 Online:2022-04-14

摘要: 考虑到边坡安全监测数据中存在粗差这一问题,提出了一种基于奇异谱分析(SSA)和密度聚类算法(DBSCAN)的粗差探测法,该方法结合SSA在提取信号和DBSCAN算法在区分粗差和异常值上的优势:首先使用SSA对监测序列进行分解重构,准确提取主信号并获取残余分量;然后使用DBSCAN聚类算法对残余分量进行分析;最后联合2种方法确定粗差点并剔除。通过引入多因素影响的边坡监测序列实例进行验证,并且将SSA-DBSCAN粗差探测法与中位数绝对偏差法(MAD)和格拉布斯准则法(Grubbs)进行比较分析。结果表明,本文提出的SSA-DBSCAN粗差探测法与上述方法相比性能优异、误判率低,可为后续监测数据分析处理乃至于预测预警奠定基础。

关键词: 边坡工程, 奇异谱分析, 时间序列, 安全监测数据, 粗差探测, DBSCAN

Abstract: A method of detecting the gross error of slope monitoring data is presented based on singular spectrum analysis (SSA) and density-based spatial clustering of applications with noise (DBSCAN). The method integrates the advantages of SSA in signal extraction and DBSCAN in distinguishing gross errors and outliers. Firstly, SSA is used to decompose and reconstruct the monitoring series to accurately extract the main signal and obtain the residual components. Secondly, DBSCAN is employed to analyze the residual components. The two methods are combined to determine and eliminate the gross errors. Examples of slope monitoring series affected by multiple factors are introduced for verification. Moreover, the present method is compared with the median absolute deviation method (MAD) and Grubbs criterion method (Grubbs), and results suggest that the present SSA-DBSCAN method is of excellent performance and low misjudgment rate compared with the abovementioned methods.

Key words: slope engineering, singular spectrum analysis, time series, safety monitoring data, gross error detection, DBSCAN

中图分类号: