基流是河川径流的主要补给来源,使用稳定、可靠的基流分割方法,分析基流特征值时间序列变化,对流域水资源规划和生态环境保护具有重要作用。为了探究长江源区基流特征值时间变化特性,采用长江源区直门达水文站1957—2020年的流量日值资料,分别使用滤波法、BFI法和 HYSEP法等基流分割方法,分析适合长江源区基流分割方法,并对基流指数、基流年内最大值、最小值、年平均值分别作时间序列分析。结果表明: 各种方法结果相差较大,计算各年代际基流指数,最大值和最小值分别为0.899和0.502。滤波法F4法方差较小、年际和年内变化较小,认为滤波法F4法是适合直门达水文站的基流分割方法。由滤波法F4法分析结果可知,直门达基流各指数均呈现增长趋势且未来呈现持续增长趋势,使用贝叶斯方法统计各指标表明长江源区直门达站基流指数BFI、年基流最大值、年基流最小值、基流年平均值分别在2002年、2004年、2017年、2004年发生显著性变异。长江源区暖湿化过程是基流变化持续增长的原因之一。同时,基流指数持续增大,说明长江源区基流占年径流量比重增加,也在一定程度上说明区域水源涵养能力不断增强。
Abstract
Baseflow is the major recharge source of river runoff. Analyzing changes in time series of baseflow characteristics using a stable and reliable baseflow separation method is of great importance to water resources planning and ecological environment protection in river basins. Based on measured daily runoff data from 1957 to 2020 at Zhimenda Hydrological station in the headwaters of the Yangtze River, we selected nine methods including filtering method, BFI method and HYSEP method to investigate the characteristic values of baseflow index in the headwaters of the Yangtze River. On this basis, we can determine a baseflow separation method suitable for the Yangtze River, and analyze the time series of baseflow index including annual maximum, annual minimum and annual average values. The results demonstrate that there is a great difference among the results of various methods, with the maximum baseflow index being 0.899 and the minimum being 0.502. The filtering method, especially F4, generates small variance and small inter-annual and intra-annual variations. Thus, we determine that F4 is the method suitable for Zhimenda station. Calculated by F4 method, all the characteristic values of baseflow index at Zhimenda show an increasing trend and will continue to increase in the future. Statistics of the characteristic values using the Bayesian method indicates that baseflow index BFI, annual maximum baseflow, annual minimum baseflow and annual average baseflow of Zhimenda station varied significantly in 2002, 2004, 2017, and 2004, respectively. Warming and wetting of the headwaters is one of the causes of baseflow change. Meanwhile, the continuous rising of BFI suggest that the proportion of baseflow in annual runoff also increases, which impies that the water conservation capacity in the region has been enhancing.
关键词
基流分割 /
基流变化 /
时间序列分析 /
贝叶斯变点检验 /
长江源区
Key words
baseflow separation /
baseflow variation /
time series analysis /
Bayesian change point test /
headwaters of the Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHU Q, SCHMIDT J P, BRYANT R B. Hot Moments and Hot Spots of Nutrient Losses from a Mixed Land Use Watershed. Journal of Hydrology, 2012, 414/415: 393-404.
[2] 莫崇勋, 谢燕平, 班华珍, 等. 不同基流分割方法在澄碧河的适用性探讨. 南水北调与水利科技(中英文), 2020, 18(2): 86-92.
[3] 郝 璐, 孙 阁. 城市化对流域生态水文过程的影响研究综述. 生态学报, 2021, 41(1): 13-26.
[4] 马秋梅, 李 玮, 王 毅, 等. 基流对亚热带农业流域氮素输出的贡献研究. 环境科学, 2016, 37(4): 1371-1378.
[5] 陈利群, 刘昌明, 李发东. 基流研究综述. 地理科学进展, 2006, 25(1): 1-15.
[6] 黄国如. 流量过程线的自动分割方法探讨. 灌溉排水学报, 2007, 26(1): 73-78.
[7] 钱开铸, 吕京京, 陈 婷, 等. 基流计算方法的进展与应用. 水文地质工程地质, 2011, 38(4): 20-25, 31.
[8] 徐榕焓, 王小刚, 郑 伟. 基流分割方法研究进展. 水土保持通报, 2016, 36(5): 352-359.
[9] 徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展. 应用生态学报, 2011, 22(11):3073-3080.
[10] 陈利群, 刘昌明, 李发东. 基流研究综述. 地理科学进展, 2006, 25(1): 1-15.
[11] 赵玉友, 耿鸿江, 潘辉学. 基流分割问题评述. 工程勘察, 1996, 24(2): 30-32.
[12] 董晓华, 邓 霞, 薄会娟, 等. 平滑最小值法与数字滤波法在流域径流分割中的应用比较. 三峡大学学报(自然科学版), 2010, 32(2): 1-4.
[13] 王 冠, 鲁程鹏, 李姝蕾, 等. 五种基流分割方法在长江螺山站的应用对比研究. 水资源与水工程学报, 2015, 26(3): 118-123.
[14] 段琪彩, 方绍东, 王 杰, 等. 昆明市松华坝水源地水源涵养能力时空变化研究. 中国农村水利水电, 2012(10): 170-173.
[15] 周旭东, 杨 涛. 三种基流分割方法在黄河源区应用中的对比分析. 水电能源科学, 2014, 32(10): 18-21.
[16] WAHL K L, WAHL T L. Determining the Flow of Comal Springs at New Braunfels,Texas. Proceedings of Texas Water, 1995, 95(6): 16-17.
[17] 夏 露, 毕如田, 宋孝玉, 等. 砚瓦川流域河川基流变化规律及其驱动因素. 生态学报, 2021, 41(21): 8430-8442.
[18] STADNYK T A,GIBSON J J,LONGSTAFFE F J. Basin-Scale Assessment of Operational Base Flow Separation Methods. Journal of Hydrologic Engineering, 2015, 20(5): 1-11.
[19] DAI Z J, CHU A, DU J Z, et al. Assessment of Extreme Drought and Human Interference on Baseflow of the Yangtze River. Hydrological Processes, 2010, 24(6): 749-757.
[20] NATHAN R J, MCMAHON T A. Evaluation of Automated Techniques for Base Flow and Recession Analyses. Water Resources Research, 1990, 26(7): 1465-1473.
[21] CHAPMAN T G. Comment on “Evaluation of Automated Techniques for Base Flow and Recession Analyses” by R. J. Nathan and T. A. McMahon. Water Resources Research, 1991, 27(7): 1783-1784.
[22] CHAPMAN T G,MAXWELL A I. Baseflow Separation-comparison of Numerical Methods with Tracer Experiments//Proceedings of the 23rd Hydrology and Water Resources Symposium. Hobart: Institution of Engineers, Australia, 1996: 539-545.
[23] BOUGHTON W C. A Hydrograph-based Model for Estimating the Water Yield of Ungauged Catchments//Proceedings of the Hydrology and Water Resources Symposium. Newcastle: Institution of Engineers, Australia,1993: 317-324.
[24] 吴珍妮, 穆兴民, 高 鹏, 等. 北洛河上游基流分割适宜性方法及基流特征. 人民黄河, 2019, 41(3): 94-99.
[25] 王晨杨, 闫铁柱, 翟丽梅, 等.密云水库白河流域基流演变特征研究.生态学报,2022,42(8):3181-3190.
[26] 杨 蕊, 王 龙, 韩春玲. 9种基流分割方法在南盘江上游的应用对比. 云南农业大学学报(自然科学), 2013, 28(5): 707-712.
[27] 冯新灵, 罗隆诚, 冯自立. 中国近50年降水变化趋势及突变的Hurst指数试验. 干旱区地理, 2009, 32(6): 859-866.
[28] 姜丽霞, 王晾晾, 吕佳佳, 等. 基于Hurst指数的黑龙江省作物生长季降水趋势研究. 气象与环境学报, 2020, 36(2): 70-77.
[29] 熊立华, 周 芬, 肖 义, 等. 水文时间序列变点分析的贝叶斯方法. 水电能源科学, 2003, 21(4): 39-41, 61.
[30] 樊 辉, 刘艳霞, 黄海军. 1950—2007年黄河入海水沙通量变化趋势及突变特征. 泥沙研究, 2009(5): 9-16.
[31] 潘雅婧, 王仰麟, 彭 建, 等. 基于小波与R/S方法的汉江中下游流域降水量时间序列分析. 地理研究, 2012, 31(5): 811-820.
[32] 谢 平, 雷红富, 陈广才, 等. 基于Hurst系数的流域降雨时空变异分析方法. 水文, 2008, 28(5): 6-10.
[33] 杜嘉妮, 蔡宜晴, 王 岗. 长江源区径流变化归因分析. 水文, 2021, 41(6): 73-78.
基金
青海省科技计划资助项目(2020-SF-151)