GIMMS和MODIS在黄土高原地区植被监测中的应用

邵霄怡, 李奇虎, 王书民

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (5) : 141-145.

PDF(3141 KB)
PDF(3141 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (5) : 141-145. DOI: 10.11988/ckyyb.20160208
信息技术应用

GIMMS和MODIS在黄土高原地区植被监测中的应用

  • 邵霄怡1, 李奇虎2, 王书民1
作者信息 +

Application of GIMMS and MODIS to Vegetation Monitoring in the Loess Plateau

  • SHAO Xiao-yi1, LI Qi-hu2, WANG Shu-min1
Author information +
文章历史 +

摘要

黄土高原地区生态环境脆弱,受季风气候的影响,四季分明,植被变化明显,为比较不同遥感数据的一致性提供了很好的试验场所。利用2001—2006年GIMMS NDVI和2001—2014年MODIS NDVI数据,分析了黄土高原地区植被变化情况,并从2种数据的空间分布特征、季节变化和时间分布特征3方面在黄土高原地区的差异进行了分析。结果表明:2种数据都反映了黄土高原地区西北部植被覆盖稀少,东南部植被覆盖较好的特点,MODIS数据在探测植被差异变化上较GIMMS数据敏感一些;从趋势上看植被指数逐年增加,秋季增加最快,表明近年来黄土高原地区植被恢复工作取得了明显的效果。与GIMMS数据相比,MODIS数据更适合于反映黄土高原地区植被的空间分布。

Abstract

Loess Plateau is featured with fragile ecological environment. Affected by monsoon climate, it has obvious distinction among four seasons and apparent vegetation changes, which offer a good testing ground for researching the consistency of different remote sensing data. According to the Normalized Difference Vegetation Index (NDVI) derived from GIMMS in 2001-2006 and from MODIS in 2001-2014, we analyzed the variations of vegetation in the loess plateau. And furthermore we investigated the differences between the two data in aspects of spatial distribution, seasonal and annual variations of vegetation in the loess plateau of Shaanxi Province. Results suggest that data obtained by the two methods both reflect the scarce coverage in the northwest and good coverage in the southeast of the loess plateau. What’s more, MODIS data is sensitive to the variation of vegetation differences. In terms of the trend, vegetation index increased year by year, and the most rapid increment was in autumn, indicating that the vegetation restoration work in recent years has achieved remarkable result. Compared with GIMMS, MODIS is more suitable for reflecting the spatial distribution of vegetation cover in the loess plateau.

关键词

归一化植被指数 / 黄土高原 / GIMMS / MODIS / 相关系数 / 时间序列对比分析

Key words

NDVI / loess plateau / GIMMS / MODIS / coefficient of correlation / comparative analysis of time series data

引用本文

导出引用
邵霄怡, 李奇虎, 王书民. GIMMS和MODIS在黄土高原地区植被监测中的应用[J]. 长江科学院院报. 2017, 34(5): 141-145 https://doi.org/10.11988/ckyyb.20160208
SHAO Xiao-yi, LI Qi-hu, WANG Shu-min. Application of GIMMS and MODIS to Vegetation Monitoring in the Loess Plateau[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(5): 141-145 https://doi.org/10.11988/ckyyb.20160208
中图分类号: P407   

参考文献

[1] 陈述彭.遥感大辞典[M].北京:科学出版社,1990.
[2] 马明国,王 建,王雪梅.基于遥感的植被年际变化及其与气候关系研究进展[J].遥感学报,2006,10(3): 421-431.
[3] 朱 源,彭光雄,王 志,等.西藏林芝地区近30a来的NDVI变化趋势研究[J].西北林学院学报,2011,26(4):69-74.
[4] BROWN M E, PINZON J E,DIDAN K, et al. Evaluation of the Consistency of Long-term NDVI Time Series Derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS and Landsat ETM+ Sensors[J]. Geoscience and Remote Sensing, 2006, 44(7):1787-1793.
[5] 张晓克, 鲁旭阳, 王小丹.2000—2010年藏北申扎县植被NDVI时空变化与气候因子的关系[J].山地学报, 2014, 32(4):476-479.
[6] 杜加强,舒俭民,王跃辉,等.青藏高原MODIS NDVI与GIMMS NDVI的对比[J].应用生态学报,2014, 25(2):533-544.
[7] 韩 鹏,姚 娟,李天宏,等.3种不同数据源NDVI的比较分析及其在延河流域的应用研究[J].应用基础与工程科学学报,2014,22(4):661-674.
[8] 任子涵.AVHRR NDVI和MODIS NDVI一致性评估[J].地理空间信息,2014, 12(3):125-128.
[9] 沙 莎, 郭 铌, 李耀辉, 等.3套NDVI长时间序列植被指数的对比——以玛曲为例[J].干旱气象,2013, 31(4):657-665.
[10] 宋富强,康慕谊,杨 朋,等.陕北地区GIMMS、SPOT-VGT和MODIS归一化植被指数的差异分析[J].北京林业大学学报,2010, 32(4):72-80.
[11] 伍光和,王乃昂,胡双雄.自然地理学[M].北京:高等教育出版社,2000.
[12] 孙 华,白红英,张清雨,等.基于SPOT VEGETATION的秦岭南坡近10年来植被覆盖变化及其对温度的响应[J].环境科学学报,2010,30(3):649-654.
[13] 刘良明,梁益同,景毅刚,等, MODIS与AVHRR植被指数关系的研究[J].武汉大学学报,2004, 29(1):307-310.
[14] 李 喆, 赵登忠, 向大享, 等.宽频段遥感植被指数研究进展综述[J].长江科学院院报,2015, 32(1):125-130.
[15] 张雪艳, 胡云锋, 庄大方, 等.蒙古高原NDVI的空间格局及空间分异[J].地理研究,2009, 28(1):10-18.
[16] BAO Ya-jing, SONG Guo-bao, LI Zheng-hai, et al .Study on the Spatial Differences and Its Time Lag Effect of Climatic Factors of the Vegetation in the Longitudinal Range-Gorge Region[J]. Chinese Science Bulletin,2007,52(2):42-49.

基金

中国地震局地震预测研究所基本科研业务经费专项项目(2014IES0203)

PDF(3141 KB)

Accesses

Citation

Detail

段落导航
相关文章

/