黄土垂直和构造节理的几何差异性及拓扑学研究

康尘云, 王少凯, 潘登丽, 贺鸣

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (9) : 115-121.

PDF(6309 KB)
PDF(6309 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (9) : 115-121. DOI: 10.11988/ckyyb.20190569
岩土工程

黄土垂直和构造节理的几何差异性及拓扑学研究

  • 康尘云, 王少凯, 潘登丽, 贺鸣
作者信息 +

Geometric Differences and Topology of Tectonic and Vertical Joints of Loess

  • KANG Chen-yun, WANG Shao-kai, PAN Deng-li, HE Ming
Author information +
文章历史 +

摘要

黄土节理是地下水的赋存场所和运移通道,它们使土体破碎进而影响稳定性和强度,是各类地质灾害的构造基础,准确分析其发育特点和展布规律,是理解黄土频发灾害的关键步骤。通过现场调查、数理统计和拓扑分析,对陇西地区黄土进行系统研究。结果表明:①陇西地区主要发育优势走向为NNW、NWW和NE向的构造节理,这是受区域内走滑断裂带和逆倾滑断裂带影响的结果;②构造节理优势组的产状服从高斯正态分布,倾角多为60°~80°,垂直节理的产状随机分布、离散型较强;③2种节理的平均间距均较宽,张开度属“开裂”范围,延续性中等,但垂直节理的间距分布范围更集中,构造节理的张开度相比更小;④拓扑分析显示I型节点占主导,节理延伸过程易被中断,分支比处于3以下的低水平,该方法能更简单、直观地描述连通性。研究结果可以为新构造应力场恢复、掌握黄土节理发育基本规律、节理网络数值建模等提供基础数据。

Abstract

Loess joints are the places where groundwater exists and migrates. They break the soil, and affect the stability and strength of loess, causing enormous losses on both economy and human lives. Joints are the structural basis of all kinds of loess disasters. Accurate analysis of its development characteristics and distribution rules is crucial to understanding the frequent occurrence of loess disasters. Through systematic field investigation, mathematical statistics and topological analysis of loess in Longxi, we found that: (1) The dominant strikes of loess tectonic joints in Longxi are NNW,NWW and NE, which is influenced by strike-slip fault and reverse tilting fault.(2) The occurrence of dominant tectonic joints group obeys the Gaussian normal distribution, with the dip angle mostly within 60-80°. The occurrence of vertical joints are more randomly distributed and highly discrete. (3) The average spacing of both tectonic and vertical joints is wide, the opening of joints belongs to “crack” in standard, and the continuity medium, except that the spacing of vertical joints is more concentrated, while the opening of tectonic joints is smaller by comparison. (4) Topological analysis shows that I-node is the majority. Joints extension process is easily interrupted. Branch ratio is at a low level below 3. Topological analysis is more simple and intuitive to describe connectivity, especially under the help of powerful toolbox in software, and has been discussed for decades in the world, yet is rarely used in relative research in China. The research results provide basic data for the recovery of Neotectonics stress fields, for understanding the basic laws of joints development and the numerical modeling of joints network.

关键词

黄土 / 节理 / 几何特征 / 拓扑分析 / 连通性

Key words

loess / joints / geometrical features / topological analysis / connectivity

引用本文

导出引用
康尘云, 王少凯, 潘登丽, 贺鸣. 黄土垂直和构造节理的几何差异性及拓扑学研究[J]. 长江科学院院报. 2020, 37(9): 115-121 https://doi.org/10.11988/ckyyb.20190569
KANG Chen-yun, WANG Shao-kai, PAN Deng-li, HE Ming. Geometric Differences and Topology of Tectonic and Vertical Joints of Loess[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(9): 115-121 https://doi.org/10.11988/ckyyb.20190569
中图分类号: TU42   

参考文献

[1] 彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684-691.
[2] 王景明, 倪玉兰, 孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报, 1994(4): 31-42.
[3] 雷光伟, 杨春和, 王贵宾, 等. 北山预选区新场地段岩体节理几何特征及评价[J]. 岩石力学与工程学报, 2016, 35(5): 896-905.
[4] 骆 进, 项 伟, 吴云刚, 等. 陕北黄土垂直节理形成机理的试验研究[J]. 长江科学院院报, 2010, 27(3): 38-41.
[5] 王景明. 黄土构造节理的理论及其应用[M].北京:中国水利水电出版社, 1996.
[6] 李同录, 王 红, 付昱凯, 等. 黄土垂直节理形成机理的试验模拟[J]. 地球科学与环境学报, 2014, 36(2): 127-134.
[7] 王新刚, 胡 斌, 赵治海, 等. 渗流作用下节理型黄土开挖边坡塌滑破坏分析[J]. 自然灾害学报, 2014, 23(2): 47-52.
[8] 桂 洋, 夏才初, 钱 鑫, 等. 节理在初始接触状态下空腔分布的确定及应用[J]. 长江科学院院报, 2018, 35(3): 21-25.
[9] SANDERSON D J, NIXON C W. The Use of Topology in Fracture Network Characterization[J]. Journal of Structural Geology, 2015, 72: 55-66.
[10]HEALY D, RIZZO R E, CORNWELL D G, et al. FracPaQ: A MATLAB Toolbox for the Quantification of Fracture Patterns[J]. Journal of Structural Geology, 2017, 95: 1-16.
[11]丁宏伟, 李 莉, 姚兴荣, 等. 大气降水对黄土滑坡的影响和控制:以甘肃省陇西黄土高原为例[J]. 甘肃地质, 2013(1): 55-60.
[12]ISRM. International Society for Rock Mechanics Commission on Standardization of Laboratory and Field Tests: Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1978, 15(6): 319-368.
[13]刘冲平, 郝文忠, 王吉亮, 等. 顺坡向外倾优势裂隙连通率对高边坡稳定性影响分析[J]. 长江科学院院报, 2014, 31(12): 74-77.
[14]緒方正虔. 岩盤分類の要因としての岩盤の不連続面, 岩盤分類[J]. 応用地質, 1984(1):12-18.
[15]黄国明,黄润秋.用窗口法估计不连续面的连通率[J].水文地质工程地质,1998(6):3-5.
[16]JING L, STEPHANSSON O. Network Topology and Homogenization of Fractured Rocks[M]∥JAMTVEIT B, YARDLEY B W D. Fluid Flow and Transport in Rocks: Mechanisms and effects. Dordrecht: Springer Netherlands, 1997: 191-202.
[17]MANZOCCHI T. The Connectivity of Two-dimensional Networks of Spatially Correlated Fractures: Connectivity of Two-dimensional Networks[J]. Water Resources Research, 2002, 38(9): 1-20.
[18]MAKEL H G. The Modelling of Fractured Reservoirs: Constraints and Potential for Fracture Network Geometry and Hydraulics Analysis[J]. Geological Society London Special Publications, 2007, 292(1): 375-403.
[19]RILEY M S. Fracture Trace Length and Number Distributions from Fracture Mapping[J]. Journal of Geophysical Research Solid Earth, 2005, 110(B8), doi: 10.1029/2004JB003164.
[20]卢全中, 彭建兵. 黄土体结构面的发育特征及其灾害效应[J]. 西安科技大学学报, 2006, 26(4): 446-450.
[21]周 喻, 张怀静, 吴顺川, 等. 节理连通率对岩体力学特性影响的细观研究[J].岩土力学, 2015.

基金

国家自然科学基金项目(41790441, 41807234)

PDF(6309 KB)

Accesses

Citation

Detail

段落导航
相关文章

/