能源桩是利用地热能的一种新型建筑节能技术,工作时会使桩周土温度发生变化,在黄土地区施作时,会直接影响黄土结构性,进而影响黄土的力学特性,因此研究变温条件下结构性黄土的变化规律具有重要意义。通过对不同温度下结构性黄土进行三轴剪切试验和核磁共振试验,研究温度对结构性黄土变形和强度的影响;基于现有黄土统计损伤理论,假定黄土微元强度服从Weibull分布,利用应变等效性假说,构建了结构性黄土在高温作用下的统计损伤本构模型;利用室内试验对该模型进行验证。结果表明:Weibull分布参数m和F0影响结构性黄土损伤本构模型的曲线形状;建立的黄土统计损伤本构模型能够很好地反映结构性黄土颗粒骨架的损伤,有效预测结构性黄土在剪切作用下的结构损伤变形。研究成果可为后续的工程建设提供理论基础。
Abstract
Energy pile is a novel geothermal-based energy-saving building technology that induces temperature changes in the surrounding soil. In loess areas,the implementation of energy pile directly impacts the structural properties of the loess,subsequently affecting its mechanical characteristics. Hence,it is crucial to investigate the variations in loess structure under changing temperature.We examined the influence of temperature on the deformation and strength of structural loess through triaxial shear tests and NMR tests conducted at varying temperature. Based on the existing statistical damage theory of loess, we develop a statistical damage constitutive model for structural loess subjected to high temperatures. This model assumes a Weibull distribution for the strength of loess microelements and employs the strain equivalence hypothesis. Indoor experiments validate the model, demonstrating its ability to comprehensively capture the damage to the particle skeleton of structural loess and accurately predict its deformation under shear forces.Weibull distribution parameters,such as m and F0,affect curve shape of the model.The findings of this study provide vital theoretical underpinnings for subsequent engineering designs and constructions.
关键词
结构性黄土 /
Weibull分布 /
温度变化 /
围压 /
结构损伤
Key words
structural loess /
Weibull distribution /
temperature change /
confining pressure /
structural damage
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陆嘉楠, 徐 洁, 陈永辉. 温度影响粉质黏土固结和强度特性的试验研究[J]. 防灾减灾工程学报,2017,37(4):598-603.
[2] 王 瑞,郭聚坤,魏道凯,等.含水率和温度影响下的高原土体力学特性试验研究[J].水利水运工程学报,2022(3):90-99.
[3] 马宝芬,杨更社,田俊峰,等.基于核磁共振的冻融循环作用下重塑黄土强度变化规律[J].科学技术与工程,2019,19(24):318-323.
[4] ZHANG Y, QIAN H, HOU K,et al. Investigating and Predicting the Temperature Effects of Permeability for Loess[J]. Engineering Geology, 2021, 285,DOI:10.1016/j.enggeo.2021.106050.
[5] WANG S,SUN Q,WANG N,et al.High-Temperature Response Characteristics of Loess Porosity and Strength[J].Environmental Earth Sciences,2021,80(17):1-11.
[6] ZHOU Z,MA W,ZHANG S,et al.Damage Evolution and Recrystallization Enhancement of Frozen Loess[J]. International Journal of Damage Mechanics, 2018, 27(8): 1131-1155.
[7] ZHI B, WANG P, LIU E,et al. A Constitutive Model for Structured Loess under High Stress Conditions[J].Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2020, 44(1): 461-470.
[8] LAI Y, XU X, YU W,et al. An Experimental Investigation of the Mechanical Behavior and a Hyperplastic Constitutive Model of Frozen Loess[J]. International Journal of Engineering Science, 2014, 84: 29-53.
[9] FU Y, GAO Z, HONG Y,et al. Destructuration of Saturated Natural Loess: From Experiments to Constitutive Modeling[J]. International Journal of Damage Mechanics, 2021, 30(4): 575-594.
[10]WANG H, TIAN K, MA B,et al. Study on the Dynamic Structural Parameters and Dynamic Structural Constitutive Relation of Intact Loess[J].Soil Mechanics and Foundation Engineering, 2021, 58(2): 100-108.
[11]沈珠江. 结构性粘土的弹塑性损伤模型[J]. 岩土工程学报, 1993, 15(3): 21-28.
[12]沈珠江. 结构性粘土的非线性损伤力学模型[J]. 水利水运科学研究, 1993(3): 247-255.
[13]沈珠江.黄土的损伤力学模型探索[C]∥中国土木工程学会第七届土力学及基础工程学术会议论文集.北京:中国土木工程学会.1994:154-158.
[14]夏旺民, 郭增玉. 黄土弹塑性损伤本构模型基本构架研究[J]. 岩土力学, 2007, 28(增刊1): 241-243.
[15]谢 星,王东红,赵法锁.基于Weibull分布的黄土状土的单轴损伤模型[J].工程地质学报,2013,21(2):317-323.
[16]郅 彬,李睿妮,张晟博,等.考虑中溶盐作用下的结构性黄土强度准则[J].长江科学院院报,2021,38(1):124-128.
[17]罗爱忠,邵生俊,陈昌禄,等.基于综合结构势的结构性黄土双硬化参数模型[J].长江科学院院报,2013,30(9):59-63,68.
[18]CAI C,MA W,ZHAO S,et al.Experimental Analysis and Discussion on the Damage Variable of Frozen Loess[J]. Advances in Materials Science and Engineering,2017,DOI: 10.1155/2017/1689251.
[19]CHEN H, LI H, FU R, et al. Dynamic Behaviour and Damage Characteristics of Loess in Xianyang, China[J].Bulletin of Engineering Geology and the Environment, 2020, 79(5): 2285-2297.
[20]SONG X, YAN X, DUAN Z,et al. The Effect of High Temperature on the Fracture Damage of Loess[J]. Engineering Fracture Mechanics, 2022, 262, Doi: 10.1016/j.engfracmech.2022.108270.
[21]LUO A Z, SHAO S J. The Structural Damage Properties of Loess under Loading and Moistening[C]∥IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 153(2), Doi: 10.1088/1755-1315/153/2/022008.
[22]YAO Z,CHEN Z,FANG X, et al. Elastoplastic Damage Seepage-consolidation Coupled Model of Unsaturated Undisturbed Loess and Its Application[J]. Acta Geotechnica,2020,15(6):1637-1653.
[23]张 德, 刘恩龙, 刘星炎, 等. 基于修正Mohr-Coulomb屈服准则的冻结砂土损伤本构模型[J]. 岩石力学与工程学报, 2018, 37(4): 978-986.
[24]GB/T 50123—2019, 土工试验方法标准[S].北京:中国计划出版社,2019.
[25]李曾乐.变温条件下结构性黄土细观结构变化及应力-应变规律研究[D].西安:西安科技大学,2021.
[26]蒋浩鹏,姜谙男,杨秀荣.基于Weibull分布的高温岩石统计损伤本构模型及其验证[J].岩土力学,2021,42(7):1894-1902.
[27]姚兆明,余 文,麻世垄,等.冻结黏土单轴抗压试验及损伤本构模型分析[J].力学与实践,2020,42(2):196-201.
[28]曹文贵, 赵明华, 刘成学. 基于Weibull分布的岩石损伤软化模型及其修正方法研究[J]. 岩石力学与工程学报, 2004, 23(19):3226-3231.
基金
西安市岩土与地下工程重点实验室开放基金项目(2060521002)