PDF(1707 KB)
PDF(1707 KB)
PDF(1707 KB)
干密度和增减湿对压实黄土水力特性的影响
Influence of Dry Density and Wetting-Drying on Hydraulic Characteristics of Compacted Loess
研究非饱和土的水力特性对分析工程建设活动中黄土的渗流和变形问题具有重要意义。以西安市南郊黄土为研究对象,采用滤纸法和饱和盐溶液法测得3种干密度下的黄土增减湿土-水特征曲线,并通过Childs & Collis-George模型预测试验黄土的非饱和渗透系数,探究干密度和增减湿对非饱和渗透特性的影响。结果表明:经历增减湿的土样的非饱和渗透系数曲线应结合土样的含水状态和对应的土-水特征曲线来预测;土体非饱和渗透系数随体积含水率的增大而增大,随基质吸力的增大而减小,在0~5 MPa范围快速衰减4~5个数量级;受瓶颈效应和减湿收缩的影响,土体增湿阶段渗透系数变化幅度小于减湿阶段的变化幅度;渗透系数随干密度增大而减小,干密度从1.719 g/cm3增大到1.834 g/cm3,渗透系数减小2个数量级;压实黄土在增减湿阶段的非饱和渗透系数最大可相差3~4倍。
The study of hydraulic characteristics in unsaturated soils is crucial for analyzing seepage and deformation of loess during engineering activities. This research focuses on loess from the southern suburbs of Xi’an City. The filter paper method and saturated salt solution method were employed to measure soil-water characteristic curves under three dry density conditions with varying degrees of wetness. The Childs & Collis-George model was used to predict unsaturated permeability coefficient, examining the impacts of dry density and wetting/drying cycles on these characteristics. Results indicate that unsaturated permeability coefficient increased with volumetric moisture content and decreased with matric suction, dropping significantly by 4-5 orders of magnitude within the 0-5 MPa range. Due to bottleneck effects and moisture-reduction-induced shrinkage, the variation in permeability coefficient during wetting stages was smaller compared to drying stages. Furthermore, with dry density increasing from 1.719 g/cm3 to 1.834 g/cm3, permeability coefficient decreased by two orders of magnitude. The unsaturated permeability coefficient of compacted loess varied by a factor of up to 3-4 between wetting and drying phases.
压实黄土 / 土-水特征曲线 / 干密度 / 增减湿 / 非饱和渗透系数
compacted loess / soil-water characteristic curve / dry density / wetting and drying / unsaturated permeability coefficient
| [1] |
王静爱. 中国地理教程[M]. 北京: 高等教育出版社, 2007.
(
|
| [2] |
马学宁, 张宇钦, 张沛云, 等. 反复干湿循环对重塑非饱和黄土力学特性影响[J]. 铁道工程学报, 2022, 39(1): 1-6, 12.
(
|
| [3] |
张玉伟, 宋战平, 谢永利. 孔隙变化条件下黄土土水特征曲线预测模型[J]. 岩土工程学报, 2022, 44(11):2017-2025.
(
|
| [4] |
贾升安, 李春阳, 黄海峰, 等. 基于土-水特征曲线试验的非饱和土强度预测[J]. 水运工程, 2022(12):225-231.
(
|
| [5] |
蔡国庆, 张策, 李舰, 等. 考虑初始干密度影响的SWCC预测方法研究[J]. 岩土工程学报, 2018, 40(增刊2): 27-31.
(
|
| [6] |
邹维列, 王协群, 罗方德, 等. 等应力和等孔隙比状态下的土-水特征曲线[J]. 岩土工程学报, 2017, 39(9):1711-1717.
(
|
| [7] |
胡孝彭, 赵仲辉, 倪晓雯. 应力状态对土-水特征曲线的影响规律[J]. 河海大学学报(自然科学版), 2013, 41(2): 150-155.
(
|
| [8] |
李燕, 李同录, 侯晓坤, 等. 用孔隙分布曲线预测压实黄土非饱和渗透曲线及其适用范围的探讨[J]. 岩土力学, 2021, 42(9): 2395-2404.
(
|
| [9] |
王红, 李同录, 付昱凯. 利用瞬态剖面法测定非饱和黄土的渗透性曲线[J]. 水利学报, 2014, 45(8): 997-1003.
(
|
| [10] |
胡海军, 李常花, 崔玉军, 等. 增湿情况重塑黄土非饱和渗透系数的测定方法研究[J]. 水利学报, 2018, 49(10): 1216-1226.
(
|
| [11] |
李华, 李同录, 江睿君, 等. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
(
|
| [12] |
陶高梁, 吴小康, 甘世朝, 等. 不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770, 1777.
(
|
| [13] |
吴冰, 朱鸿鹄, 曹鼎峰, 等. 黄土水分场光纤原位监测及非饱和渗透系数估算[J]. 防灾减灾工程学报, 2019, 39(5): 691-699.
(
|
| [14] |
胡凯, 陈晓清. 利用瞬态剖面法测定宽级配砾石土水力参数试验研究[J]. 水土保持研究, 2019, 26(4): 343-348.
(
|
| [15] |
刘鹏. 重塑黄土非饱和渗透特性室内试验研究[D]. 兰州: 兰州大学, 2019.
(
|
| [16] |
JTG 3430—2020, 公路土工试验规程[S]. 北京: 人民交通出版社, 2021.
(JTG 3430—2020, Test Methods of Soils for Highway Engineering[S]. Beijing: China Communications Press, 2021. (in Chinese))
|
| [17] |
王钊, 杨金鑫, 况娟娟, 等. 滤纸法在现场基质吸力量测中的应用[J]. 岩土工程学报, 2003, 25(4): 405-408.
(
|
| [18] |
孙文静, 孙德安. 非饱和土力学试验技术[M]. 北京: 中国水利水电出版社, 2018.
(
|
| [19] |
赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453.
(
|
| [20] |
|
| [21] |
陈仲颐, 周景星, 王洪谨. 土力学[M]. 北京: 清华大学出版社, 1994.
(
|
/
| 〈 |
|
〉 |