颗粒组构对砂土三轴压缩性状影响的细观分析

马泉坤, 徐舜华, 刘琨, 孙军杰, 田文通

长江科学院院报 ›› 2020, Vol. 37 ›› Issue (4) : 96-103.

PDF(6919 KB)
PDF(6919 KB)
长江科学院院报 ›› 2020, Vol. 37 ›› Issue (4) : 96-103. DOI: 10.11988/ckyyb.20181266
岩土工程

颗粒组构对砂土三轴压缩性状影响的细观分析

  • 马泉坤1, 徐舜华1,2,3, 刘琨1,2,3, 孙军杰1,2,3, 田文通1,2,3
作者信息 +

Mesoscopic Analysis on the Effect of Granular Fabric on Triaxial Compression Behavior of Sandy Soil

  • MA Quan-kun1, XU Shun-hua1,2,3, LIU Kun1,2,3, SUN Jun-jie1,2,3, TIAN Wen-tong1,2,3
Author information +
文章历史 +

摘要

基于离散元开源系统Yade,开发一种可以确定材料初始孔隙度与级配的滚动阻力DEM模型,结合Labenne砂的室内试验与引入滚动效应的三轴压缩模型的数值试验,探索了组构特性对砂土材料的力学性质及微观参数的影响。基于数值试验结果,分析了模型中颗粒力链、位移场及应变场等随着三轴模型变形的变化规律。通过制备5组不同级配与3组不同孔隙率的数值模拟试样,对比Labenne砂的室内试验。结果表明:①不均匀系数与孔隙率对砂土峰值强度有明显的影响;②不均匀系数对颗粒配位数及局部应力有很大的影响;③砂土剪切面的破坏模式为沿着剪切面由内向外扩展破裂。

Abstract

The influence of granular fabric on mechanic properties and microscopic parameters of sandy soil was investigated in this research via numerical simulation of triaxial compression test in association with Labenne's laboratory test of sandy soil. The numerical model which could determine the initial porosity and gradation of materials in consideration of rolling resistance was developed based on discrete element open source system Yade. According to the results of numerical tests, the variation laws of particle force chain, displacement field, and strain field with triaxial model deformation were analyzed. The numerical test involved five groups of particle gradation and three groups of porosity, and were compared with Labenne's laboratory test of sandy soil. Results conclude that: 1) the nonuniform coefficient and porosity have obvious influences on the peak strength of sandy soil; 2) the nonuniform coefficient has great influence on the coordination number of particles and the local stress; (3) the failure of sandy soil follows the pattern extending from the interior to the exterior along the shear plane.

关键词

砂土 / 三轴压缩 / 颗粒组构特性 / Yade / 滚动阻力

Key words

sandy soil / triaxial compression / granular fabric characteristics / Yade / rolling resistance

引用本文

导出引用
马泉坤, 徐舜华, 刘琨, 孙军杰, 田文通. 颗粒组构对砂土三轴压缩性状影响的细观分析[J]. 长江科学院院报. 2020, 37(4): 96-103 https://doi.org/10.11988/ckyyb.20181266
MA Quan-kun, XU Shun-hua, LIU Kun, SUN Jun-jie, TIAN Wen-tong. Mesoscopic Analysis on the Effect of Granular Fabric on Triaxial Compression Behavior of Sandy Soil[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(4): 96-103 https://doi.org/10.11988/ckyyb.20181266
中图分类号: TU43   

参考文献

[1] BOUTECA M, GUEGUEN Y. Mechanical Properties of Rocks: Pore Pressure and Scale Effects[J]. Oil & Gas Science and Technology, 1999, 54(6): 703-714.
[2] MOHAMMADZADEH O,REZAEI N,CHATZIS I. Pore-Level Investigation of Heavy Oil and Bitumen Recovery Using Solvent-aided Steam Assisted Gravity Drainage (SA-SAGD) Process[J]. Energy Fuels,2010,24(12):6327-6345.
[3] RENARD F, GUNDERSEN E, HELLMANN R, et al. Numerical Modeling of the Effect of Carbon Dioxide Sequestration on the Rate of Pressure Solution Creep in Limestone: Preliminary Results[J]. Oil & Gas Science and Technology, 2005, 60(2): 381-399.
[4] DE BOEVER E, VARLOTEAUX C, NADER F H, et al. Quantification and Prediction of the 3D Pore Network Evolution in Carbonate Reservoir Rocks[J]. Oil & Gas Science and Technology, 2012, 67(1): 161-178.
[5] 尹振宇,许 强,胡 伟.考虑颗粒破碎效应的粒状材料本构研究:进展及发展[J].岩土工程学报,2012,34(12): 2170-2180.
[6] BIAREZ J, HICHER P Y. Influence de la Granulometrie et de Son Evolution par Ruptures de Grains sur le Comportement Mecanique de Materiaux Granulaires[J]. Revue Francaise de Genie Civil, 1997, 1(4): 607-631.
[7] 高玉峰,张 兵,刘 伟,等.堆石料颗粒破碎特征的大型三轴试验研究[J].岩土力学,2009,30(5): 1237-1246.
[8] 张家铭,张 凌,蒋国盛,等.剪切作用下钙质砂颗粒破碎试验研究[J].岩土力学,2008,29(10): 2789-2793.
[9] 王查武.粗粒土颗粒连续级配方程研究[J].工程建设与设计,2018(19):10-12.
[10]卢银彬,潘 杰,苏晓辉.颗粒型多孔材料孔隙率理论分析和实验研究[J].科学技术与工程,2019,19(7):87-92.
[11]MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. New York: Wiley, 2005: 87-91.
[12]RADJAI F, DUBOIS F. Discrete-element Model of Granular Materials[M]. New York: Wiley, 2011: 123-124.
[13]ODA M, IWASHITA K. Mechanics of Granular Materials: An Introduction[M]. Rotterdam: A A Balkma Publishers, 1999: 178-183.
[14]IWASHITA K, ODA M. Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM[J]. Journal of Engineering Mechanics, 1998, 124(3): 285-292.
[15]IWASHITA K,ODA M. Micro-deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method[J]. Powder Technology,2000,109(1):192-205.
[16]KOZICKI J, DONZE F V. YADE-OPEN DEM: An Open-source Software Using a Discrete Element Method to Simulate Granular Material[J]. Engineering Computations, 2009, 26(7/8): 786-805.
[17]WANG Deng-ming, ZHOU You-he. Discrete Element Simulation of Localized Deformation in Stochastic Distributed Granular Materials[J]. Science in China Series G Physics Mechanics and Astronomy, 2008, 51(9): 1403-1415.
[18]PLASSIARD J P, BELHEINE N, DONZE F V. A Spherical Discrete Element Model: Calibration Procedure and Incremental Response[J]. Granular Matter, 2009, 11(5): 293-306.
[19]BELHEINE N, PLASSLARD J P, DONZE F V, et al. Numerical Simulation of Drained Triaxial Test Using 3D Discrete Element Modeling[J]. Computers and Geotechnics, 2009, 36(1/2): 320-331.
[20]ABOUL HOSN R,SIBILLE L,BENAHMED N,et al.Discrete Numerical Modeling of Loose Soil with Spherical Particles and Interparticle Rolling Friction[J].Granular Matter,2017,19(1),DOI:10.1007/s10035-016-0687-0.
[21]ESTRADA N, TABOADA A, RADJA F. Shear Strength and Force Transmission in Granular Media with Rolling Resistance[J]. Physical Review E, 2008,78(2): 021301, DOI: 10.1103/PhysRevE.78.021301.
[22]CUNDALL P A, STRACK O D L. A Discrete Numerical Model for Granular Assemblies[J]. Geotechnique,1979, 29(1): 47-65.
[23]BAGI K. An Algorithm to Generate Random Dense Arrangements for Discrete Element Simulations of Granular Assemblies[J]. Granular Matter, 2005,7(1): 31-43.
[24]CHANG C S, MISRA A. Packing Structure and Mechanical Properties of Granulates[J]. Journal of Engineering Mechanics, 1990, 116(5): 1077-1093.
[25]FAZEKAS S, TOROK J, KERTESZ J, et al. Computer Simulation of Three-dimensional Shearing of Granular Materials: Formation of Shear Bands[J]. Powders and Grains, 2005: 223-226.
[26]JERIER J F, DONZE F V. IMBAULT D, et al. A Geometric Algorithm for Discrete Element Method to Generate Composite Materials[R]. Grenoble, France: Discrete Element Group for Hazard Mitigation, Grenoble University, 2008.
[27]SMILAUER V.YADE Reference Documentation[EB/OL]. https://yade.fandom.com/wiki/Yade YADE Documentation,474.
[28]COQUILLAY S. Prise en Compte de la Non-linearite du Comportement des Sols Soumis a de Peties Deformations pour le Calcul des Ouvrages Geotechniques[D]. Paris: Ecole Nationale des Ponts et Chaussees, 2005.
[29]MESTAT P,BERTHELON J P.Modelisation par Elements Finis des Essais sur Fondations Superficielles a Labenne[J]. Bulletin Laboratoires Ponts Chaussees, 2001(234): 57-78.
[30]MESTAT P, RIOU Y. Methodologie de Determination des Parametres pour la Loi de Comportement Elastoplastique de Vermeer et Simulations d'Essais de Mecanique des Sols[J]. Bulletin Laboratoires Ponts Chaussees, 2001(235):19-39.
[31]MESTAT P. Caracterisation du Comportement du Sable de Labenne. Determination des Parametres des Lois de Nova et de Vermeerapartir d'Essais de Laboratoire[J]. Bulletin de Liaison des Laboratoires des Ponts et Chaussees, 2001(225): 21-40.

基金

国家自然科学基金项目(51779234);甘肃省科技计划资助项目(18JR3RA415)

PDF(6919 KB)

Accesses

Citation

Detail

段落导航
相关文章

/