为有效解决高寒地区开挖边坡冻融侵蚀严重、生态修复等难题,结合多雄拉工业广场开挖边坡气候特征,在传统改性材料固化砂土的基础上,通过掺入不同比例的秸秆纤维,对秸秆纤维加筋固化土的渗透性、抗剪强度和抗冻融性能进行测试,分析加筋固化效果,探寻最优配比,并揭示加固机理。结果表明:与纯砂土相比,加入改性材料和秸秆纤维后,降低了土体渗透性,增加了土体的黏聚力,内摩擦角基本保持不变;含水率是土体渗透性能的主要影响因素,秸秆纤维是土体黏聚力的主要影响因素;此外,加固土抗冻融性能明显优于纯土,当改性材料、水、秸秆纤维分别占砂土质量0.234%、15%和0.3%时,秸秆纤维加筋固化土的抗冻融性能最佳。研究成果对于明确秸秆纤维加筋固化土的内在机制有参考价值。
Abstract
To effectively address the issues of severe freeze-thaw erosion and ecological restoration of excavated slopes in alpine regions, our study focused on the excavation slopes in the Duoxiongla Industrial Plaza as a case study. In view of the climatic characteristics and based upon traditional solidified sand with modified materials, we investigated the effects of adding different proportions of straw fiber on the permeability, shear strength, and freeze-thaw resistance of straw fiber reinforced solidified soil. Our analysis aims to examine the effectiveness of reinforcement and solidification, explore optimal ratios, and reveal the underlying reinforcement mechanism. Results demonstrate that the addition of modified material and straw fiber reduced soil permeability and increased soil cohesion when compared to pure sand. Moreover, the internal friction angle remains essentially unchanged. Moisture content is the primary factor that affects soil permeability, while straw fiber is the main contributor to soil cohesion. In addition, the freeze-thaw resistance of reinforced soil is significantly better than that of pure soil. The highest level of freeze-thaw resistance can be achieved when modified material, water, and straw fiber account for 0.234%, 15%, and 0.3% of sand mass, respectively.
关键词
砂土 /
秸秆纤维 /
渗透性 /
抗剪强度 /
冻融循环
Key words
sand /
straw fiber /
permeability /
shear strength /
freeze-thaw cycle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 夏海江,杜尧东,孟维忠.聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验[J].水土保持学报,2000,14(3):14-17.(XIA Hai-jiang, DU Yao-dong, MENG Wei-zhong. Simulated Experiment of Preventing Soil Erosion with Polyacrylamide on Sloping Field[J]. Journal of Soil Water Conservation, 2000, 14(3): 14-17.(in Chinese))
[2] 陈 涛,周俊荣,孙明星.HEC固化剂对土壤渗透性的影响[J].干旱地区农业研究,2004,22(4): 192-194.(CHEN Tao, ZHOU Jun-rong, SUN Ming-xing. Influence of Solidfying Agent HEC on Loess Permeability[J]. Agricultural Research in the Arid Areas, 2004, 22(4): 192-194.(in Chinese))
[3] 张丽萍.黄土边坡坡面稳定及防治技术研究[D].杨凌:西北农林科技大学,2009.(ZHANG Li-ping.Research on Loess Slope Stability and Prevention Strategies[D].Yangling: Northwest A & F University,2009.(in Chinese))
[4] 裴向军,杨晴雯,许 强,等.改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J].岩石力学与工程学报,2016,35(11):2316-2327.(PEI Xiang-jun, YANG Qing-wen, XU Qiang, et al. Research on Glue Reinforcement Mechanism and Scouring Resistant Properties of Soil Slopes by Modified Carboxymethyl Cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2316-2327.(in Chinese))
[5] 杨晴雯,裴向军,黄润秋.改性钠羧甲基纤维素加固粉砂土水稳性及稳定机理分析[J].长江科学院院报,2019,36(12):107-112.(YANG Qing-wen, PEI Xiang-jun, HUANG Run-qiu. Silty Sand Stabilized by Modified Carboxymethylcellulose: Water Stability and Mechanism of Stabilization[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(12): 107-112.(in Chinese))
[6] 杨晴雯,裴向军,黄润秋.改性钠羧甲基纤维素加固土冻融性能及损伤机制研究[J].岩石力学与工程学报,2019,38(增刊1):3102-3113.(YANG Qing-wen, PEI Xiang-jun, HUANG Run-qiu. Research on the Effect of Freeze and Thaw Cycles on the Property and Damage Mechanism of M-CMC Stabilized Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3102-3113.(in Chinese))
[7] 武雷杰,杨秀娟,张 路,等.聚合氯化铝(PAC)改性膨胀土的胀缩特性试验研究[J].长江科学院院报,2020,37(1):84-89.(WU Lei-jie, YANG Xiu-juan, ZHANG Lu, et al. Experimental Study on Swelling and Shrinkage of Polyaluminum Chloride (PAC) Modified Expansive Soil[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(1): 84-89.(in Chinese))
[8] 崔勇涛,刘文白.固化剂固化疏浚土的渗透性与微观机理研究[J].长江科学院院报,2017,34(5):109-114.(CUI Yong-tao,LIU Wen-bai.Permeability and Micro-mechanism of Dredged Mud Solidified with Curing Agent[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(5): 109-114.(in Chinese))
[9] 王凤华,项 伟,袁悦锋.离子土壤固化剂改性膨胀土冻融过程中水分迁移试验研究[J].长江科学院院报,2018,35(7):111-116.(WANG Feng-hua, XIANG Wei, YUAN Yue-feng. Water Migration in Expansive Soil Modified by Ionic Soil Stabilizer under Cyclic Freezing and Thawing[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(7): 111-116.(in Chinese))
[10] 姚 婕. 麦秸秆加筋土强度特性试验研究[D]. 西安: 长安大学, 2018.(YAO Jie. Experimental Study on Strength Characteristics of Wheat Straw Reinforced Soil[D]. Xi'an: Changan University, 2018. (in Chinese))
[11] 杨继位,柴寿喜,王晓燕,等.以抗压强度确定麦秸秆加筋盐渍土的加筋条件[J].岩土力学,2010,31(10): 3260-3264.(YANG Ji-wei, CHAI Shou-xi, WANG Xiao-yan, et al. Suitable Reinforcement Conditions on the Basis of Compressive Strength of Reinforced Saline Soils with Wheat Straw[J]. Rock and Soil Mechanics, 2010, 31(10): 3260-3264.(in Chinese))
[12] 冯德成,林 波,张 锋,等.冻融作用对土的工程性质影响的研究进展[J].中国科学(技术科学),2017,47(2): 111-127.(FENG De-cheng, LIN Bo, ZHANG Feng, et al. A Review of Freeze-thaw Effects on Soil Geotechnical Properties[J]. Scientia Sinica (Technologica), 2017, 47(2): 111-127.(in Chinese))
[13] 肖东辉,冯文杰,张 泽,等.冻融循环作用下黄土渗透性与其结构特征关系研究[J].水文地质工程地质,2015,42( 4): 43-49.(XIAO Dong-hui, FENG Wen-jie, ZHANG Ze, et al. Research on the Relationship between Permeability and Construction Feature of Loess under the Freeze-thaw Cycles[J]. Hydrogeology & Engineering Geology, 2015, 42(4): 43-49.(in Chinese))
[14] VIKLANDER P. Permeability and Volume Changes in till Due to Cyclic Freeze/Thaw[J]. Canadian Geotechnical Journal, 1998, 35(3): 471-477.
[15] 王大雁,马 巍,常小晓,等.冻融循环作用对青藏粘土物理力学性质的影响[J].岩石力学与工程学报,2005,24(23): 4313-4319.(WANG Da-yan, MA Wei, CHANG Xiao-xiao, et al. Physico-mechanical Properties Changes of Qinghai-Tibet Clay Due to Cyclic Freezing and Thawing[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(23): 4313-4319.(in Chinese))
[16] LIU J, CHANG D, YU Q. Influence of Freeze-Thaw Cycles on Mechanical Properties of a Silty Sand[J]. Engineering Geology, 2016, 210(5): 23-32.[LinkOut]
[17] 朱利君,裴向军,张晓超,等. 双聚材料固化黄土直接剪切性能研究[J].人民珠江,2020,41(3): 78-84.(ZHU Li-jun, PEI Xiang-jun, ZHANG Xiao-chao, et al. Study on Direct Shear Properties of Cured Loess with Double-poly Material[J]. Pearl River,2020,41(3):78-84.(in Chinese))
[18] GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.(GB/T 50123—2019, Standard for Geotechnical Testing Method[S]. Beijing: China Planning Press, 2019. (in Chinese))
[19] LU Y, LIU S, WENG L,et al. Fractal Analysis of Cracking in a Clayey Soil under Freeze-Thaw Cycles[J]. Engineering Geology, 2016, 208: 93-99.
[20] ALDAOOD A,BOUASKER M, AL-MUKHTAR M. Effect of Water during Freeze-Thaw Cycles on the Performance and Durability of Lime-Treated Gypseous Soil[J].Cold Regions Science and Technology,2016,123(3):155-163.
[21] 李 建,唐朝生,王德银,等.基于单根纤维拉拔试验的波形纤维加筋土界面强度研究[J].岩土工程学报,2014,36(9):1696-1704.(LI Jian,TANG Chao-sheng,WANG De-yin,et al.Single Fiber Pullout Tests on Interfacial Shear Strength of Wave-shape Fiber-reinforced Soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(9): 1696-1704.(in Chinese))
基金
国家自然科学基金项目(42107212,41931296)