为分析随着尾矿坝坝高的增加,处于尾矿库高埋深条件下的尾矿料在地震作用下是否会出现液化现象或发生较大永久变形,选择尾砂土进行高埋深条件下不同围压400,800,1 200 kPa的动强度试验,并进行尾砂土液化影响深度分析。分析成果表明高埋深条件下尾砂土的动应力随围压的增加而增大,随固结应力比的增加而增大,变化规律和小围压下的变化规律基本相同;高围压条件下,围压对液化应力比影响较大,液化应力比随围压的增加而减小,但归一化较差。采用规范的尾矿料地震液化判别方法,在尾砂土较小干密度和低固结应力比条件下,中部尾砂土存在大概率液化可能,随着地震作用应力比随埋深的逐渐折减,底部尾砂土可以不考虑液化问题
Abstract
Evaluating the seismic safety of tailing dam involves the liquefaction or even permanent deformation of tailings material at large buried depth in middle and low parts of tailings pond. In this paper, the dynamic strength of tailings sand in large buried depth was tested under different confining pressures (400 kPa, 800 kPa, and 1 200 kPa), and the influenced depth of liquefaction was investigated. Results manifested that the dynamic stress of tailings sand in large buried depth increased with the rising of confining pressure and consolidation stress ratio, while liquefaction stress ratio decreased with the increase of confining pressure. Except for the liquefaction stress ratio under high confining pressure, the rules of dynamic stress and liquefaction stress ratio varying with confining pressure and consolidation stress ratio under high confining pressure are in general the same as those under low confining pressure. According to the liquefaction judgment method recommended in standard, the tailings sand with small dry density and low consolidation stress ratio in the middle of tailings pond are most probably to experience liquefaction. On the contrary, for tailings sand in the bottom, liquefaction can be ignored as seismic stress ratio reduced gradually with buried depth.
关键词
尾矿坝 /
尾砂土 /
动强度试验 /
高埋深 /
液化深度
Key words
tailings dam /
tailings sand /
dynamic strength test /
large buried depth /
liquefaction depth
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王凤江.上游法高尾矿坝的抗震问题[J].冶金矿山设计与建设, 2001(5): 10-13.
[2] 阮元成,郭 新.饱和尾矿料动力变形特性的试验研究[J].水利学报, 2003(4):24-29.
[3] OZCAN N T, ULUSAY RESAT, ISIK N S. A Study on Geotechnical Characterization and Stability of Downstream Slope of a Tailings Dam to Improve Its Storage Capacity (Turkey)[J].Environmental Earth Sciences,2013,69(6):1871-1890.
[4] RICO M, BENITO G, SALGUEIRO A R, et al. A Review of the European Incidents in the Worldwide Context[J].Journal of Hazardous Materials, 2008, 152(2): 846-852.
[5] FERDOSI B, JAMES M, AUBERTIN M. Numerical Simulations of Seismic and Post-seismic Behavior of Tailings[J]. Canadian Geotechnical Journal,2016,53(1):85-92.
[6] 张 超,杨春和,白世伟.尾矿料的动力特性试验研究[J]. 岩土力学,2006,27(1):35-40.
[7] 贺汇文,龙建辉,吕远强.米箭沟尾矿坝料动力特性试验研究[J]. 工程地质学报, 2007,15(6):817-822.
[8] 乐 陶,张 进,曹纪刚.磷矿浮选细粒尾矿的动力特性试验[J]. 现代矿业, 2014(11):98-100.
[9] 陈存礼,何军芳,胡再强,等.尾矿砂的动力变形及动强度特性研究[J]. 水利学报,2007,38(3):365-370.
[10]陈存礼,何军芳,胡再强,等,动荷作用下饱和尾矿砂的孔压和残余应变演化特性[J]. 岩石力学与工程学报, 2006,25(增刊2):4034-4039.
[11]余 果,杨作亚,尹光志,等.羊拉铜矿尾矿料动力特性试验研究[J].重庆建筑大学学报,2008,30(6):107-110.
[12]谭钦文,李军林,徐 涛.中线法堆坝尾矿料的动力特性实验研究[J].自然灾害学报, 2010,19(4):60-65.
[13]谭 凡,饶锡保,黄 斌,等,饱和尾矿粉土动力特性试验研究[J]. 地震工程学报,2015,37(3):772-777.
[14]余湘娟,吴克雄,高 磊.某尾矿库坝基粉砂动力特性试验[J].水利水运工程学报,2016(2):11-16.
[15]尹光志,王文松,魏作安,等,小打鹅尾矿库筑坝尾矿的动力学特性试验研究[J]. 岩石力学与工程学报, 2017,36(增刊1):3121-3130.
[16]GB 50547—2010,尾矿堆石坝岩土工程技术规范[S].北京:中国计划出版社,2010.
[17]袁晓铭,曹振中,孙 锐,等.汶川8.0级地震液化特征初步研究[J]. 岩石力学与工程学报,2009,28 (6):1288-1296.
[18]GB 50191—2012,构筑物抗震设计规范[S].北京:中国计划出版社,2012,
基金
国家重点研发计划项目(2017YFC0404804);国家自然科学基金-雅砻江联合基金重点项目(U1765203);长江科学院创新团队项目(CKSF2015051/YT)