土壤加固剂可改善土体理化特性。选择改性钠羧甲基纤维素(M-CMC)为加固剂,以粉砂土为加固对象,研究M-CMC加固粉砂土水稳性及稳定机理。开展不同加固剂掺量下加固土湿化崩解试验进行崩解状态监测和完全崩解系数(CR)测试,结果显示:随加固剂掺量的增加,试样开始崩解的时间延时、崩解产物中粗粒含量增加、悬浮粒减少,CR快速降低,当掺量达0.9%时,加固土样无崩解。进一步对试样的渗透性、基质吸力、抗剪强度、化学组分及微观结构进行测试,结果显示:随加固剂掺量的增加,加固土样团聚体粒径增大、渗透性减小、基质吸力增大、抗剪强度提高。研究成果表明:M-CMC在土颗粒表面产生“包裹效应”、相邻土颗粒间产生“吸附效应”、相隔土颗粒间产生“连接效应”,使得土颗粒由镶嵌点接触转变为面式接触和链式连接,形成网状胶结结构团聚体,从而提高加固土水稳性。
Abstract
Soil stabilizer can be used to improve the properties of soil. In this study, the water stability and stabilization mechanism of silty sand stabilized by modified carboxymethylcellulose (M-CMC) were investigated via disintegration test of stabilized silty sand dosed with varying content of M-CMC. Monitoring of disintegration and measurement of complete disintegration coefficient (CR) of soil samples suggest that with the augment of M-CMC dosage, the incipient time of disintegration delayed, the content of coarse particles increased, sediment in suspension decreased and the value of CR dropped sharply; no disintegration was observed when the content of M-CMC reached 0.9%. Furthermore, results of infiltration, matric suction, shear strength, chemical composition and microstructure showed that the size of aggregates increased, infiltration coefficient reduced, suction and shear strength both enhanced together with the increasing of M-CMC content, thereby revealing “membrane effect” on the surface of soil particles, “absorption effect” between adjoining particles, and “bonding effect” between aggregates from M-CMC. As a result, the cementation between particles transformed from point contact to line and plane contact, and single particles changed to aggregates with net cementation, which modified the water stability of soil.
关键词
粉砂土 /
改性钠羧甲基纤维素 /
加固剂 /
胶结作用 /
结构团聚体 /
水稳性 /
稳定机理
Key words
silty sand /
modified carboxymethylcellulose /
reinforcement agent /
cementation /
structural aggregate /
water stability /
stabilization mechanism
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨会民,王静爱,邹学勇,等. 风水复合侵蚀研究进展与展望[J] . 中国沙漠,2016(4): 962-971.
[2] 赵春红,高建恩,徐 震. 牧草调控绵沙土坡面侵蚀机理[J] . 应用生态学报,2013, 24(1): 113-121.
[3] 陈渠昌,江培福,雷廷武,等. 利用PAM防治松散扰动沙土风蚀效果的风洞试验研究[J] .农业工程学报,2006(10): 7-11.
[4] LIU J, SHI B, JIANG H, et al. Research on the Stabilization Treatment of Clay Slope Topsoil by Organic Polymer Soil Stabilizer[J] . Engineering Geology,2011, 117(1/2): 114-120.
[5] 裴向军,杨晴雯,许 强,等. 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J] . 岩石力学与工程学报,2016, 35(11): 2316-2327.
[6] 刘 瑾,施 斌,姜洪涛,等. STW型高分子土壤稳定剂改良粘性土团聚体水稳性实验研究[J] .水文地质工程地质,2009, 36(2): 77-80.
[7] 崔勇涛,刘文白. 固化剂固化疏浚土的渗透性与微观机理研究[J] .长江科学院院报,2017, 34(5): 109-114.
[8] 边加敏. 石灰改良膨胀土的水稳定性研究[J] .长江科学院院报,2016, 33(1): 77-82.
[9] 王凤华,项 伟,袁悦锋. 离子土壤固化剂改性膨胀土冻融过程中水分迁移试验研究[J] .长江科学院院报,2018, 35(7): 111-116.
[10] 崔德山,项 伟,董建军,等.离子土壤固化剂加固红粘土的试验研究[J] .长江科学院院报,2007,24(3):42-45.
[11] JTG E40—2007,公路土工试验规程[S] .北京:人民交通出版社,2007.
[12] SL 237—1999,土工试验规程[S] .北京:中国水利水电出版社,1999.
[13] 乔聚林,刘传富,董海洲,等. 羧甲基纤维素钠对面团特性及面包品质的影响[J] .中国粮油学报,2009, 24(4): 13-16.
[14] 赵天宇,王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J] .中南大学学报(自然科学版),2012, 43(6): 2445-2453.
[15] 熊承仁,刘宝琛,张家生. 重塑粘性土的基质吸力与土水分及密度状态的关系[J] .岩石力学与工程学报,2005,24(2): 321-327.
[16] 李 旭,张利民,敖国栋.失水过程孔隙结构、孔隙比、含水率变化规律[J] .岩土力学,2011,32(增刊1):100-105.
[17] 范智杰,屈建军,周 焕.沙土内摩擦角与粒径、含水率及天然坡角的关系[J] .中国沙漠,2015,35(2):301-305.
[18] 欧孝夺,吴 恒,周 东.广西红粘土和膨胀土热力学特性的比较研究[J] .岩土力学,2005,26(7):1068-1072.
[19] VOLIKOV A B, KHOLODOV V A, KULIKOVA N A, et al. Silanized Humic Substances Act as Hydrophobic Modifiers of Soil Separates Inducing Formation of Water-stable Aggregates in Soils[J] .Catena, 2016(137): 229-236.
基金
国家重点基础研究发展计划(973)项目(2014CB744703);四川省国土资源厅“8·8”九寨沟地震灾区生态化地质灾害防治重大科技支撑研究课题(KJ-2018-20);新疆交通建设集团股份有限公司资助项目(2016010)