基于TLI和PCA的贵州草海水质状况评价

陈丽华,喻记新,李丽,吕文强,张建利

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (8) : 40-45.

PDF(1603 KB)
PDF(1603 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (8) : 40-45. DOI: 10.11988/ckyyb.20170236
水资源与环境

基于TLI和PCA的贵州草海水质状况评价

  • 陈丽华1,喻记新2,3,李丽1,吕文强4,张建利4
作者信息 +

Water Quality Assessment of Caohai Lake in Guizhou Based on Trophic State Index and Principal Component Analysis

  • CHEN Li-hua1, YU Ji-xin2,3, LI Li1, L Wen-qiang4, ZHANG Jian-li4
Author information +
文章历史 +

摘要

为了评价贵州草海水质状况,分别于2016年1,4,7,10月对草海阳关山和草海中部各3个样点的11项水体理化指标进行了监测,运用综合营养状态指数法(TLI)并结合《地表水环境质量标准》(GB 3838—2002)对监测区水质进行了评价,同时应用主成分分析(PCA)分析了水质的污染程度和主要影响因子。结果显示:①11项参数在2个区域均有显著的季节差异,其中透明度(SD)和溶氧(DO)为冬季最优,悬浮物(SPM)在秋季最高,pH几乎均呈弱碱性(除秋季);TN,TP,NH4+-N,CODMn全年的水平分别为0.58~2.27,0.032~0.072,0.059~0.364,4.28~6.79 mg/L,Chl.a水平为5.62~9.95 mg/m3,其中TN在秋季最高,TP在秋冬季较高,CODMn和Chl.a在夏秋季较高。②TLI评价结果表明,阳关山和中部水体TLI值在秋季略超过50,为轻度污染状态,其他季节TLI值均为30~50,为中营养状态;《地表水环境质量标准》(GB 3838—2002)评价结果表明阳关山全年主要为Ⅱ—Ⅲ类水质,而中部较差,全年主要为Ⅱ— Ⅳ类水质,影响水质类别的主要因子是TN和CODMn,TP和NH4+-N全年为Ⅱ类水平。③PCA结果显示阳关山水质最主要的影响因子包括离子、氮素、有机质、DO和Chl.a,而中部则包括Chl.a,NH4+-N,SD,EC,TP,DO,WT,SPM。总之,氮素和有机质是影响草海阳关山和中部水质的最主要因子和根本原因,控制外源性的氮和有机质输入是管理和改善草海水质的关键所在。

Abstract

Eleven indicators of water quality in two areas of the Caohai Lake (Yangguanshan and the middle part) in Guizhou Province were measured seasonally in 2016. Trophic state index (TLI) and Surface Water Quality Standard (GB 3838—2002) were used to evaluate the trophic status of water quality, and principal component analysis (PCA) was conducted to assess the pollution level and main influential factors. Results demonstrated that: (1) The eleven indicators in both areas displayed significant seasonal variations, among which transparency and dissolved oxygen (DO) were highest in winter; while suspended solids (SPM) was highest in autumn. Except that in autumn, pH remained at about 8. TN, TP, NH4+-N and CODMn were in 0.58-2.27, 0.032-0.072, 0.059-0.364 and 4.28-6.79 mg/L, respectively and Chl.a ranged from 5.62 to 9.95 mg/m3, with the highest TN in autumn, the highest TP in autumn and winter, and highest CODMn and Chl.a in summer and autumn. (2) The TLI of both areas were slightly higher than 50 in autumn, indicating slight pollution, while in other seasons, the TLI ranged between 30 and 50, implying medium trophic state. Evaluation results from GB 3838—2002 show that the water quality in Yangguanshan belonged to class Ⅱ and Ⅲ, except for a few occasions; whereas in the middle part, the water quality was mainly class Ⅱ and Ⅳ. TN and CODMn were major influential factors, while TP and NH4+-N were at level Ⅱ throughout the year. (3) Principle component analysis revealed that the most important influencing factors of water quality in Yangguanshan were ions, nitrogen, organic matter, DO and Chl.a, while in the middle part were Chl.a, NH4+-N, SD, EC, TP, DO, WT and SPM. In conclusion, nitrogen and organic matters are the most important influencing factors and the fundamental causes of water quality in Yangguanshan and the middle part of Caohu Lake. Controlling the inputs of external nitrogen and organic matters would be the key to improving the water quality in Caohai Lake.

关键词

水质评价 / 草海 / 季节变化 / 综合营养状态指数法(TLI) / 主成分分析(PCA)

Key words

water quality assessment / Caohai Lake / seasonal variation / trophic state index (TLI) / principal component analysis (PCA)

引用本文

导出引用
陈丽华,喻记新,李丽,吕文强,张建利. 基于TLI和PCA的贵州草海水质状况评价[J]. 长江科学院院报. 2018, 35(8): 40-45 https://doi.org/10.11988/ckyyb.20170236
CHEN Li-hua, YU Ji-xin, LI Li, L Wen-qiang, ZHANG Jian-li. Water Quality Assessment of Caohai Lake in Guizhou Based on Trophic State Index and Principal Component Analysis[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(8): 40-45 https://doi.org/10.11988/ckyyb.20170236
中图分类号: X832   

参考文献

[1] 彭益书, 付 培, 杨瑞东. 草海湿地生态系统健康评价[J]. 地球与环境, 2014, 42(1): 68-81.
[2] 喻元秀. 草海高原湿地区域环境承载力研究[D]. 贵阳: 贵州师范大学, 2005.
[3] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 390-391.
[4] 耿 侃, 宋春青. 贵州草海自然环境保护与自然资源开发[J]. 北京师范大学学报(自然科学版), 1990,(1): 84-90.
[5] 徐 松, 高 英. 草海湖泊湿地水环境污染现状及可持续利用研究[J]. 环境科学导刊, 2009, 28(5): 33-36.
[6] 冯元璋. 草海水体的微生物污染调查[J].仲恺农业技术学院学报, 1994, 7(2): 16-20.
[7] 刘凤英. 草海湿地生态系统影响因素分析[J]. 贵州环保科技, 2005, 11(4): 34-37.
[8] 郭 媛, 林昌虎, 何腾兵, 等. 草海自然保护区生态环境问题及保护对策[J]. 贵州科学, 2011, 29(6): 26-30.
[9] 郑钧宁, 夏品华, 林 陶, 等. 贵州草海城郊混合区农田沟渠氮磷含量及分布特征[J]. 山地农业生物学报, 2013, 32(3): 224-228.
[10]欧阳勇, 林昌虎, 何腾兵, 等. 运用主成分分析法评价贵州草海水质污染[J].贵州科学, 2012, 30(1): 21-26.
[11]潘 鸿. 贵州威宁草海浮游植物种组变化及水体富营养化特征研究[D]. 贵阳: 贵州师范大学, 2005.
[12]曾得峰, 喻元秀, 寇学永. 湿地水环境质量的模糊综合评价——以贵州省草海高原湿地为例[J]. 贵州环保科技, 2006, 12(2): 21-26.
[13]于 洋, 张 民, 钱善勤, 等. 云贵高原湖泊水质现状及演变[J]. 湖泊科学, 2010, 22(6): 820-828.
[14]张珍明, 张清海, 林绍霞, 等. 贵州草海湖湿地水体污染特征及污染因子分析研究[J]. 广东农业科学, 2012, 39(20): 183-187.
[15]张家春, 林绍霞, 张清海, 等. 贵州草海底泥-上覆水中氮磷含量时空分布特征[J]. 广东农业科学, 2014, 41(9): 184-188.
[16]蔡国俊, 周 晨, 林艳红, 等. 贵州草海高原湿地浮游动物群落结构与水质评价[J]. 生态环境学报, 2016, 25(2): 279-285.
[17]周 晨, 喻理飞, 蔡国俊, 等. 草海高原湿地湖泊水质时空变化及水质分区研究[J]. 水生态学杂志, 2016, 37(1): 24-30.
[18]GB 3838—2002,地表水环境质量标准[S]. 北京:中国环境科学出版社,2002.
[19]李 为, 都 雪, 林明利, 等. 基于PCA和SOM网络的洪泽湖水质时空变化特征分析[J]. 长江流域资源与环境, 2013, 22(12): 1593-1601.
[20]金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 北京: 中国环境科学出版社, 1990: 294-295.
[21]郭 媛, 林昌虎, 何腾兵, 等. 草海表层沉积物有机碳、氮、磷分布特征及污染评价[J]. 贵州科学, 2012, 30(1): 27-32.
[22]RHEE G Y, GOTHAM I J. Optimum N: P Ratios and Coexistence of Planktonic Algae[J]. Journal of Phycology, 1980, 16(4): 486-489.
[23]REYNOLDS C S. The Ecology of Freshwater Phytoplankton[M]. London, UK: Cambridge University Press, 1984.
[24]黄 明, 洪天求. 基于主成分分析的巢湖水质影响因子研究[J]. 合肥工业大学学报(自然科学版), 2005, 28(6): 639-642.
[25]郭劲松, 李 哲, 张 呈, 等. 三峡小江回水区藻类集群与主要环境要素的典范对应分析[J]. 长江科学院院报, 2010, 27(10): 60-64.

基金

贵州省重大专项(黔科合重大专项字[2016] 3022-03号)

PDF(1603 KB)

Accesses

Citation

Detail

段落导航
相关文章

/