利用山东海河流域骨干河流马颊河2009—2011年水质监测资料及污染调查评价中所取得的数据,通过构造改进的RAGA-PPC模型,将高维数据转换为低维数据,并将此模型应用于马颊河河流健康评价研究。调查断面选取从务庄闸到邓集共12个断面。河流健康评价结果显示总氮和氨氮在整个河流中总体趋势是增长的,生化需氧量在下游区域的大道王闸到邓集几乎是直线上升;河流中化学需氧量和生化需氧量会随着汛期和非汛期有些起伏,在汛期含量会有所增加;将选取进行综合评价的5个断面的权重值与标准值对比,其值均在0.22~0.15之间,马颊河基本处于亚健康状态。从研究区的人为因素及自然因素方面对马颊河河流健康状况进行了简析,为海河流域河流健康评价及河流污染治理提供了有效的科学依据。
Abstract
A RAGA-PPC (Real coding based Accelerating Genetic Algorithm-Projection Pursuit Classification) model was employed to convert high dimensional data to low dimensional data and assess the health of a river in Haihe river basin. Majia River, a key river of Haihe river basin in Shandong Province, was taken as case study. Data obtained from water quality monitoring and pollution investigation in 2009-2011 were utilized, and 12 sections were selected for the investigation. The assessment results show that the overall trend of total nitrogen and ammonia nitrogen in the whole river is growing, and also biochemical oxygen demand in the downstream area from Dadaowang gate to Dengji goes almost straight up. Chemical oxygen demand and biochemical oxygen demand of the river change in flood season and non-flood season, both increasing in flood season. According to comparison between the weighted value and the standard value of 5 sections, the chemical oxygen demand and biochemical oxygen demand are both between 0.22-0.15, indicating that Majia River is basically in a sub-healthy state. Furthermore, the human factors and natural factors of Majia River's sub-healthy state are analyzed in the purpose of providing effective scientific basis for river health assessment and river pollution control in the Haihe River Basin.
关键词
马颊河 /
河流健康评价 /
多指标 /
水质评价 /
RAGA-PPC模型
Key words
Majia river /
river health assessment /
multiple indexes /
water quality evaluation /
RAGA-PPC Model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈广洲,解华明,鲁祥友. Matlab遗传算法工具箱在非线性优化中的应用[J].计算机技术与发展, 2008,18(3):246-248,252.
[2] 叶 浩,钱家忠,黄夕川,等.投影寻踪模型在地下水水质评价中的应用[J].水文地质工程地质,2005,32(5):9-12.
[3] KIBASSA D.The Impact of Cost Recovery and Sharing System on Water Policy Implementation and Human Right to Water: A Case of Ileje,Tanzania[J].Water Science and Technology,2011,63(11):2520-2526.
[4] LEVINE J.Adaptive Management in River Restoration:Theory vs.Practice in Western North America[R].California: Water Resources Center Archives,University of California,2004.
[5] 蔡其华.维护健康长江 促进人水和谐[J].人民长江,2005,36(3):1-3.
[6] 李国英.黄河治理的终极目标是“维持黄河健康生命”[J].人民黄河,2004,26(1):1-3.
[7] 陈广洲,汪家权,李如忠,等.基于 D-S证据理论的水利工程招标评价[J].水利发电学报,2012,31(3):263-266.
[8] 金菊良,杨晓华,丁 晶.基于实数编码的加速遗传算法[J].四川大学学报(工程科学版),2000,32(4):20-24.
[9] 夏柯山.企业中投影寻踪分类模型的建立与应用[J].科技广场,2008,(6):39-41.
[10]陈裕荣.广东湿润区河流健康评价指标体系及方法研究[D].广州:中山大学,2008.
[11]杨文慧.河流健康的理论构架与诊断体系的研究[D].南京:河海大学,2007.
[12]王宏伟,张 伟,杨丽坤,等.中国河流健康评价体系[J].河北大学学报(自然科学版),2011,31(6):669-672.
[13]吴阿娜,杨 凯,车 越,等.河流健康状况的表征及其评价[J].水科学进展,2005,16(4):602-608.
[14]许继军,陈 进,金小娟.健康长江评价区划方法和尺度探讨[J].长江科学院院报,2011,28(10):49-53,58.
基金
水利部公益性行业科研专项经费项目(201401003);山东省省级水利科研及技术推广项目(SDSLKY201207)