为了解大武水源地地下水水化学特征及水质现状,选取2017年12月采集的57件水样,综合运用数理统计、相关性分析、Piper三线图、Gibbs模型和离子比法,分析了大武水源地的主要离子特征及其成因,并运用综合评价法对水源地水质进行评价。结果表明:大武水源地地下水主要阳离子为Ca2+和Na+,约占阳离子总量的82.8%;主要阴离子为HCO3-、SO42-、Cl-,约占阴离子总量的91.9%;水化学类型以HCO3·SO4-Ca·Mg(Ca)型、HCO3·SO4·Cl-Ca·Mg(Ca)型、HCO3·Cl-Ca·Mg(Ca)型为主;水化学组分主要受碳酸盐岩风化溶解控制;地下水水质都在Ⅲ类水以上,Ⅲ类水占据总水样的47.4%,Ⅳ类和Ⅴ类水占据了52.6%。研究成果对了解大武水源地水环境现状具有重要意义。
Abstract
The hydrochemical characteristics and water quality status of karst confined water in Dawu water source of Shandong Province were investigated using mathematical statistics, correlation analysis, Piper's plot, Gibbs model and ion ratio method by analyzing 57 groundwater samples taken in 2017. The major ion characteristics and causes were examined, and the water quality was assessed by comprehensive evaluation method. Results reveal that Ca2+ and Na+ are the major cations of groundwater, accounting for 82.8% of the total cations; HCO3-, SO42-, and Cl- are the main anions, accounting for 91.9% of the total anions. HCO3·SO4-Ca· Mg(Ca), HCO3·SO4·Cl-Ca·Mg(Ca), and HCO3·Cl-Ca·Mg(Ca) are dominant hydrochemical patterns. The hydrochemical components are mainly controlled by weathering and dissolution of carbonate rock. The groundwater quality is above class Ⅲ, which accounts for 47.4% of the total water samples, while Ⅳ and Ⅴ classes occupy 52.6% of the total water samples.
关键词
地下水 /
水化学特征 /
水质评价 /
大武水源地 /
相关性分析
Key words
groundwater /
hydrochemical characteristics /
water quality evaluation /
Dawu water source /
correlation analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014,35(1):131-142.
[2] 周嘉欣,丁永建,曾国雄,等.疏勒河上游地表水水化学主离子特征及其控制因素[J].环境科学,2014,35(9):3315-3324.
[3] 张 涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学,2017,38(11):4537-4545.
[4] 冯建国,赫明浩,李贵恒,等.泰莱盆地孔隙水水化学特征及其控制因素分析[J].环境化学,2019,38(11):2594-2600.
[5] 张世旭,王中美,代天豪.毕节地区岩溶地下水水化学特征与水质评价[J].长江科学院院报,2019,36(5):28-33,41.
[6] 刘久潭,周 丹,高宗军,等.青岛西海岸新区地下水水化学特征及水质评价[J].山东科技大学学报(自然科学版),2019,38(2):14-24,43.
[7] 钱声源,张乾坤,陈从建,等.焦作地区地下水水化学特征分析及水质评价[J].长江科学院院报,2020,37(4):30-36.
[8] CAROL E,KRUSE E,MASPLA J.Hydrochemical and Isotopical Evidence of Groundwater Salinization Processes on the Coastal Plain of Samborombón Bay, Argentina[J].Journal of Hydrology, 2009, 365(3/4):335-345.
[9] CHITSAZAN M, AGHAZADEH N, MIRZAEE Y, et al. Hydrochemical Characteristics and Quality Assessment of Urban Groundwater in Urmia City, NW Iran[J]. Water Science & Technology: Water Supply, 2017, 17(5): 1410-1425.
[10]MASOUD A A, EL-HORINY M M, ATWIA M G, et al. Assessment of Groundwater and Soil Quality Degradation Using Multivariate and Geostatistical Analyses, Dakhla Oasis, Egypt[J]. Journal of African Earth Sciences, 2018,142: 64-81.
[11]SHAHAB A, QI S H, ZAHEER M, et al. Hydrochemical Characteristics and Water Quality Assessment for Drinking and Agricultural Purposes in District Jacobabad, Lower Indus Plain, Pakistan[J]. International Journal of Agriculture and Biology, 2018, 11(2): 115-121.
[12]OTHMAN A, IBRAHEEM I, GHAZALA H, et al. Hydrogeophysical and Hydrochemical Characteristics of Pliocene Groundwater Aquifer at the Area Northwest El Sadat City, West Nile Delta, Egypt[J]. Journal of African Earth Sciences, 2019, 150: 1-11.
[13]陈余道,朱学愚.大武水源地地下水生物降解烃污染物的机理[J].广西地质,1999,12(2):33-36.
[14]朱学愚,刘建立.山东淄博市大武水源地裂隙岩溶水中污染物运移的数值研究[J].地学前缘,2001,18(1):171-178.
[15]王 兵.淄博市大武水源地有机污染物与污染源相关分析研究[J].质谱学报,2000,21(3/4):39-40.
[16]李 铎,宋雪琳,牛平山.大武水源地地下水环境模拟与石油污染控制研究[J].北京地质,2001,13(4):20-24.
[17]韩 巍,李国敏,黎 明,等.大武水源地岩溶地下水开采动态数值模拟分析[J].中国岩溶,2008,27(2):182-188.
[18]陈余道,朱学愚,朱学顺.淄博市大武水源地地下水流场演变及其影响因素[J].水文地质工程地质,1999(3):34-35,47.
[19]吴 庆,郭永丽,翟远征,等.大武水源地地下水中NO3-N动态变化特征及其影响因素分析[J].水文,2017,37(6):68-73.
[20]李沫蕊,王韦舒,任姝娟,等.运用改进综合评分法筛选典型污染物的研究:以大武水源地地下水典型污染物筛选为例[J].环境污染与防治,2014,36(11):72-77.
[21]张人权,梁 杏,靳孟贵,等.水文地质学基础[M].6版.北京:地质出版社,2011.
[22]PIPER A M. A Graphic Procedure in the Geochemical Interpretation of Water-Analyses[J]. Neurochemistry International, 1984, 6(1): 27-39.
[23]山东省地矿工程勘察院.淄博市刘征地区供水水文地质勘察报告[R].济南:山东省地矿工程勘察院,2012.
[24]孙 斌.多元统计方法在鄂尔多斯白垩系盆地都思兔河地下水系统水化学空间分布规律研究中的应用[D].长春:吉林大学,2007.
[25]GIBBS R J. Mechanisms Controlling World Water Chemistry[J]. Science, 1970,170(3962):1088-1090.
[26]孙 英,周金龙,乃尉华,等.新疆喀什噶尔河流域地表水水化学季节变化特征及成因分析[J].干旱区资源与环境,2019,33(8):128-134.
[27]冯建国,鲁统民,高宗军,等.新泰市地下水水化学特征及成因探讨[J].山东科技大学学报(自然科学版),2020,39(1):11-20.
[28]曾妍妍,周金龙,贾瑞亮,等.新疆祁漫塔格地区地表水水化学特征及成因分析[J].干旱区资源与环境,2017,31(6):64-70.
[29]安乐生,赵全升,叶思源,等.黄河三角洲浅层地下水化学特征及形成作用[J].环境科学,2012,33(2):370-378.
[30]袁建飞,邓国仕,徐 芬,等.毕节市北部岩溶地下水水化学特征及影响因素的多元统计分析[J].中国地质,2016,43(4):1446-1456.
[31]孙厚云,毛启贵,卫晓锋,等.哈密盆地地下水系统水化学特征及形成演化[J].中国地质,2018,45(6):1128-1141.
基金
山东省地质调查院研究基金项目(SDLR-2017-138)