基于博弈论组合赋权的TOPSIS模型在地下水水质评价中的应用

张德彬, 刘国东, 王亮, 钟瑞

长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 46-50.

PDF(1418 KB)
PDF(1418 KB)
长江科学院院报 ›› 2018, Vol. 35 ›› Issue (7) : 46-50. DOI: 10.11988/ckyyb.20161231
水资源与环境

基于博弈论组合赋权的TOPSIS模型在地下水水质评价中的应用

  • 张德彬a, 刘国东a,b, 王亮a, 钟瑞a
作者信息 +

Application of TOPSIS Model Based on Game Theory to Groundwater Quality Evaluation

  • ZHANG De-bin1, LIU Guo-dong1,2, WANG Liang1, ZHONG Rui1
Author information +
文章历史 +

摘要

农村地下水水源地水质评价是保证农村饮水安全的重要基础。考虑到权重值对TOPSIS模型的重要性,通过基于博弈论集合的模型将模糊层次分析法(FAHP)确定的主观权重和熵权法确定的客观权重进行组合赋权优化,同时引用“虚拟负理想点”代替“传统负理想点”,避免样点出现与理想点和负理想点欧式距离等距问题。并以德阳市5个典型乡镇农村地下水饮用水源水质监测数据为评价对象,计算相对贴近度确定各水质等级。该模型评价结果与F指法、熵权-TOPSIS和FAHP-TOPSIS模型评价结果的对比分析。结果表明改进的TOPSIS模型评价结果具有合理性、有效性及实用性,并能准确地反映地下水水质等级以及偏离分级标准的程度。

Abstract

Evaluation of rural groundwater quality is an important basis to ensuring the safety of drinking water in rural areas. On account of the importance of weight value to the TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) model, combinatorial weighting and optimization on the subjective weight and the objectiveweight respectively determined by the fuzzy analytic hierarchy process (FAHP) and the entropy weight method are carried out based on the game theory set model. In the meantime, a “virtual negative ideal point” is defined to replace the traditional negative ideal point, hence avoiding the equivalent Euclidean distance from the sample point respectively to the ideal point and to the negative ideal point. With the water quality monitoring data of five typical villages and towns in Deyang city as evaluation object, the water quality grade is determined by calculating the relative closeness degree. The results of the present model are compared with the evaluation results of F method, the Entropy-TOPSIS and the FAHP-TOPSIS model, which proves that the results of the improved TOPSIS evaluation model is objective, effective and practical. Besides, the present model could also accurately reflect the groundwater quality grade and the deviation from grading standard.

关键词

地质水水质评价 / 熵权法 / 模糊层次分析法 / 博弈论 / TOPSIS模型 / 农村饮水

Key words

groundwater quality evaluation / entropy weight / fuzzy analytic hierarchy process (FAHP) / the game theory / TOPSIS model / rural drinking water

引用本文

导出引用
张德彬, 刘国东, 王亮, 钟瑞. 基于博弈论组合赋权的TOPSIS模型在地下水水质评价中的应用[J]. 长江科学院院报. 2018, 35(7): 46-50 https://doi.org/10.11988/ckyyb.20161231
ZHANG De-bin, LIU Guo-dong, WANG Liang, ZHONG Rui. Application of TOPSIS Model Based on Game Theory to Groundwater Quality Evaluation[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(7): 46-50 https://doi.org/10.11988/ckyyb.20161231
中图分类号: X824   

参考文献

[1] 王 浩, 王建华. 中国水资源与可持续发展[J]. 中国科学院院刊, 2012, 27(3): 352-358.
[2] 厉艳君, 杨木壮. 地下水水质评价方法综述[J]. 地下水, 2007, 29(5):19-24.
[3] 白玉娟, 殷国栋. 地下水水质评价方法与地下水研究进展[J]. 水资源与水工程学报, 2010, 21(3): 115-119.
[4] 张 军, 梁 川. 基于灰色关联系数矩阵的TOPSIS模型在水环境质量评价中的应用[J]. 四川大学学报:工程科学版, 2009, 41(4): 97-101.
[5] 李 磊, 金菊良, 朱永楠. TOPSIS方法应用中若干问题的探讨[J]. 水电能源科学, 2012, 30(3): 51-54.
[6] 吴健华, 李培月, 宋宝德, 等. 基于熵权的TOPSIS方法用于地下水质量综合评价[J]. 宁夏工程技术, 2010, 9(4):326-329.
[7] 何逢标. 基于AHP与TOPSIS的水资源配置模型探讨[J]. 安徽农业科学, 2009, 37(17): 8140-8141.
[8] 杨皓翔, 梁 川, 侯小波. 改进的TOPSIS模型在地下水水质评价中的应用[J]. 南水北调与水利科技, 2012, 10(5): 51-55.
[9] 王 旭, 陈嘉佳, 邢乐斌,等. 基于“TOPSIS/DEA/AHP”模型的战略性供应商选择[J]. 工业工程, 2008, 11(4):70-73.
[10]龚艳萍, 赵志刚. 用模糊层次分析法确QFD中消费者要求权重[J]. 价值工程, 2006, 25(7):81-83.
[11]丁 斌, 陈殿龙. 基于粗糙集与FAHP-FCE的地方政府应急物流预案评价[J]. 系统工程, 2009, 27(4):7-11.
[12]甘 蓉, 宣 昊, 刘国东, 等. 基于博弈论综合权重的物元可拓模型在地下水质量评价中的应用[J]. 水电能源科学, 2015,(1):39-42.
[13]胡永宏. 对TOPSIS法用于综合评价的改进[J]. 数学的实践与认识, 2002, 32(4):572-575.
[14]刘明宇, 华 珞, 王世岩,等. 基于改进TOPSIS方法的温榆河水环境质量综合评价研究[J]. 南水北调与水利科技, 2007, 5(3):57-60.
[15]王櫹橦, 吴 勇, 古广华. 四川省德阳市地下水水质模糊数学综合评价[J]. 地质灾害与环境保护, 2011, 22(1):51-55.
[16]GB/T 14848—93, 地下水质量标准[S].北京:中国标准出版社,1994.

PDF(1418 KB)

Accesses

Citation

Detail

段落导航
相关文章

/