长江科学院院报 ›› 2017, Vol. 34 ›› Issue (12): 140-146.DOI: 10.11988/ckyyb.20161345

• 独立覆盖流形法专栏 • 上一篇    下一篇

独立覆盖流形法的本质边界条件施加方法

苏海东1, 2, 颉志强1, 2   

  1. 1.长江科学院 材料与结构研究所,武汉 430010;
    2.水利部水工程安全和病害防治工程技术研究中心,武汉 430010
  • 收稿日期:2016-12-26 出版日期:2017-12-01 发布日期:2017-12-22
  • 作者简介:苏海东(1968-),男,湖北武汉人,教授级高级工程师,博士,主要从事水工结构数值分析工作和计算方法研究,(电话)027-82927167(电子信箱)suhd@mail.crsri.cn。
  • 基金资助:
    中央级公益性科研院所基本科研业务费项目(CKSF2015033/CL,CKSF2016022/CL)

Application of Essential Boundary Conditions in NumericalManifold Method Based on Independent Covers

SU Hai-dong1, 2, XIE Zhi-qiang1, 2   

  1. 1.Material and Engineering Structure Department, Yangtze River Scientific Research Institute, Wuhan 430010, China;
    2.Research Center on Water Engineering Safety and Disaster Prevention of Ministry of Water Resources, Wuhan 430010, China
  • Received:2016-12-26 Published:2017-12-01 Online:2017-12-22

摘要: 目前,数值流形方法、无网格法等新的数值计算方法存在本质边界条件不易严格施加的问题。针对笔者前期提出的独立覆盖流形法,通过一个悬臂梁的例子,系统地分析了本质边界条件施加问题。采用多项式覆盖函数,提出了改进边界覆盖函数和直接设定独立覆盖函数2种方法,不仅严格满足边界条件,而且能保证边界附近的近似函数逼近真实解。这2种方法避免了常用罚函数法中的罚数取值对计算结果和方程性态的影响问题,而且只需令部分自由度不参与计算就能实现,操作简单。通过设置覆盖函数来施加边界条件的方式可供其他新方法借鉴。

关键词: 数值流形方法, 独立覆盖, 本质边界条件, 多项式覆盖函数, 罚函数法

Abstract: At present, some new numerical methods such as Numerical Manifold Method (NMM) and Meshless Method are facing with the difficulty of strictly applying essential boundary conditions. Through a case study of a cantilever beam, the application of essential boundary conditions is systematically analyzed in NMM based on independent covers previously proposed by the authors. On the basis of polynomial cover functions, two methods are presented: one is the improved method of boundary cover functions; and the other is the method of setting independent cover functions. The boundary conditions are strictly satisfied, and the approximate functions near the boundaries are guaranteed to approach the real solutions. The proposed methods are refrained from the influence of penalty number in common penalty method on computational results and linear equation conditions. Moreover, the implementation is very simple, for it just needs some degrees of freedom not involved in the computation.The proposed approach of applying boundary conditions by setting cover functions has a reference value for other new methods.

Key words: Numerical Manifold Method (NMM), independent covers, essential boundary conditions, polynomial cover functions, penalty function method

中图分类号: