计算机辅助工程中的设计—分析—再设计的反复过程,蕴含着计算机辅助设计(CAD)与计算机辅助工程分析(CAE)相融合的迫切需求。提出基于CAD几何的数值流形方法:按照CAE真实物理场分布的复杂程度来布置数学网格和设置近似函数阶次,比等几何分析方法更合理;只需引入自动且快速的切割操作,就能实现CAD模型进入CAE后无需修改而直接建模;针对以往的流形法需要将曲线边界离散成折线的问题,给出了曲线边界与网格直边的切割算法,实现了几何模型在CAE建模和网格细化中的保形性;针对流形法通常使用的多项式近似函数,推导了曲线“近似”单纯形的解析积分公式并应用于带有曲线边界的流形元的精确积分运算;最后通过平板内的圆孔算例验证了方法的可行性。该方法对CAD和CAE的融合提出了全新的思路,为实现CAD进入CAE后的自动化分析打下了基础。
Abstract
The iterative process of design-analysis-redesign implies urgent requests of the integration of computer aided design (CAD) and computer aided engineering (CAE). In this paper, we present a numerical manifold method (NMM) based on CAD geometry: we can arrange mathematical meshes and set order of approximation functions according to the complexity degree of physical field distribution in CAE, which is more reasonable than isogeometric analysis (IGA) method. Through introducing automatic and fast cutting operations, we can realize direct modeling from CAD model to CAE model without modifications. Moreover, to solve the problem that curves on geometric boundaries are required to be discretized into line segments in present NMM, we put forward algorithms to cut the curves of geometric boundary with the lines of mesh boundary, hence preserving the shape of the geometric model in the procedures of CAE modeling and mesh refinement. Furthermore, as for the polynomial approximation functions usually used in NMM, we deduce analytical integral formula of “approximate” simplex with a curved edge and use it to obtain precise integral calculations of manifold elements with curved boundaries. Finally, we verify the feasibility of the method through an example of a circular hole in a plate. The research offers new thinking for the integration of CAD and CAE, and lays foundation for the automatic analysis from CAD models to CAE.
关键词
数值流形方法 /
等几何分析方法 /
CAD几何 /
曲线与直线的切割 /
单纯形积分 /
CAD/CAE协同
Key words
numerical manifold method (NMM) /
isogeometric analysis (IGA) /
CAD geometry /
cutting of curves and lines /
simplex integration /
CAD/CAE cooperativity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 百度百科.CAE [EB/OL].(2015-06-11)[2015-07-10]. http://baike.baidu.com/view/112169.htm.
[2] HUGHES T J R,COTTRELL J A,BAZILEVS Y. Isogeometric Analysis:CAD,Finite Elements,NURBS,Exact Geometry and Mesh Refinement[J]. Computer Methods in Applied Mechanics and Engineering,2005,194:39-41.
[3] 吴紫俊, 黄正东, 左兵权, 等. 等几何分析研究概述[J]. 机械工程学报,2015,51(5):114-129.
[4] 夏 阳. 假设位移协调有限元及其在精确几何分析中的应用[D].大连:大连理工大学,2013.
[5] SHI G H. Manifold Method of Material Analysis[C]// U.S. Army Research Office. Transactions of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, U S A, June 18-21,1991:57-76.
[6] 石根华.数值流形方法与非连续变形分析[M]. 裴觉民译.北京:清华大学出版社,1997.
[7] 张湘伟, 章争荣, 吕文阁, 等. 数值流形方法研究及应用进展 [J]. 力学进展, 2010, 40(1): 1-12 .
[8] 祁勇峰, 苏海东, 崔建华.部分重叠覆盖的数值流形方法初步研究 [J].长江科学院院报, 2013,30(1):65-70 .
[9] 苏海东,颉志强,龚亚琦,等. 基于独立覆盖的流形法的收敛性及覆盖网格特性[J]. 长江科学院院报,2016,33(2):131-136.
[10]苏海东,祁勇峰. 部分重叠覆盖流形法的覆盖加密方法 [J]. 长江科学院院报, 2013, 30(7):95-100.
[11]林绍忠,祁勇峰,苏海东.基于矩阵特殊运算的高阶流形单元分析[J]. 长江科学院院报, 2006,23(3):36-39.
[12]林 永,陈 浩.用二分法求解一元实系数多项式方程的全部实根[J]. 大学数学,2008,24(4):89-91 .
[13]孙家广,杨长贵. 计算机图形学[M]. 北京:清华大学出版社,1995.
[14]林绍忠. 单纯形积分的递推公式[J]. 长江科学院院报, 2005,22(3):32-34.
[15]苏方方. 动态规划算法计算组合数Cmn[J]. 现代计算机,2011,(10):35-37.
[16]徐芝纶.弹性力学(第2版)[M].北京: 人民教育出版社,1982.
基金
国家自然科学基金项目(51409012);中央级公益性科研院所基本科研业务费项目(CKSF2014054/CL)