基于三维数值流形法的位移边界处理方法

杨石扣, 艾华东

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (3) : 137-142.

PDF(1512 KB)
PDF(1512 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (3) : 137-142. DOI: 10.11988/ckyyb.20201243
水工结构与材料

基于三维数值流形法的位移边界处理方法

  • 杨石扣, 艾华东
作者信息 +

Essential Boundary Treatment of Three-dimensional Numerical Manifold Method

  • YANG Shi-kou, AI Hua-dong
Author information +
文章历史 +

摘要

针对三维数值流形法中罚函数法施加任意方向边界位移和多步加载误差累积问题,通过修正传统三维数值流形法控制方程中的位移边界部分,推导出含沿着某一方向施加边界位移条件和相应的分步加载情况的计算公式,以期扩大控制方程在位移边界处理上的适用范围和减少多步加载误差累积效应。选取2个典型算例进行数值模拟和对比分析,验证该方法的准确性。计算结果表明:文中方法的计算结果与解析解相吻合,修正公式适用于不同方向施加边界位移的情况,具有较强的适应性;考虑位移边界误差修正比不考虑误差修正的计算精度高;随分步加载步数的增多,不考虑位移边界误差修正的累积计算误差逐渐增大,考虑位移边界误差修正的则影响不大。

Abstract

In three-dimensional numerical manifold method, the problem of applying boundary displacement in arbitrary direction using penalty function is not yet clear, and multi-step loading would result in the accumulation of error. In view of this, the formulas in consideration of the boundary displacement conditions applied along a certain direction and the corresponding step loading conditions are derived by modifying the displacement boundary part of the governing equation of traditional three-dimensional numerical manifold method. The research is expected to expand the application of the governing equation in displacement boundary treatment and to reduce the cumulative effect of multi-step loading errors. Two typical examples are selected for numerical simulation and comparative analysis to verify the accuracy of the method. Results demonstrate that the calculation results of the proposed method are in good agreement with the analytical solutions, and the modified formula is applicable to the case of boundary displacement applied in different directions, and thus is strongly adaptable. The calculation accuracy with displacement boundary error correction is higher than that without error correction; with the increase of loading steps, the cumulative error with no error correction increases gradually, but that with error correction is unaffected.

关键词

三维数值流形法 / 位移边界条件 / 罚函数法 / 多步加载 / 误差修正

Key words

three-dimensional numerical manifold method / essential boundary condition / penalty function method / multi-step loading / error correction

引用本文

导出引用
杨石扣, 艾华东. 基于三维数值流形法的位移边界处理方法[J]. 长江科学院院报. 2022, 39(3): 137-142 https://doi.org/10.11988/ckyyb.20201243
YANG Shi-kou, AI Hua-dong. Essential Boundary Treatment of Three-dimensional Numerical Manifold Method[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(3): 137-142 https://doi.org/10.11988/ckyyb.20201243
中图分类号: O346.1   

参考文献

[1] SHI G H. Manifold Method of Material Analysis[C]//Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, Minnesota. June 18-21, 1991: 57-76.
[2] ZHENG H, XU D D. New Strategies for Some Issues of Numerical Manifold Method in Simulation of Crack Propagation[J]. International Journal for Numerical Methods in Engineering, 2014, 97(13): 986-1010.
[3] STROUBOULIS T, COPPS K, BABUSKA I. The Generalized Finite Element Method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(32/33): 4081-4193.
[4] 蔡永昌, 朱合华. 在无单元法里直接准确施加位移边界条件和材料不连续条件[J]. 计算力学学报, 2004, 21(6): 740-745.
[5] 苏海东, 颉志强. 独立覆盖流形法的本质边界条件施加方法[J]. 长江科学院院报, 2017, 34(12): 140-146.
[6] MA G W, AN X M, HE L. The Numerical Manifold Method: A Review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32.
[7] 李 伟, 郑 宏, 郭宏伟. 基于MLS-NMM的摩擦接触问题研究[J]. 工程力学, 2017, 34(11): 18-25.
[8] ZHANG X, LIU X, LU M W,et al. Imposition of Essential Boundary Conditions by Displacement Constraint Equations in Meshless Methods[J]. Communications in Numerical Methods in Engineering, 2001, 17(3): 165-178.
[9] WU C K C, PLESHA M E. Essential Boundary Condition Enforcement in Meshless Methods: Boundary Flux Collocation Method[J]. International Journal for Numerical Methods in Engineering, 2002, 53(3): 499-514.
[10]CAI Y C, ZHU H H. Direct Imposition of Essential Boundary Conditions and Treatment of Material Discontinuities in the EFG Method[J]. Computational Mechanics, 2004, 34(4): 330-338.
[11]MIHARA R, TAKEUCHI N. Material Nonlinear Analysis Using Hybrid-type Penalty Method Assumed Second Order Displacement Field[C]//Proceedings of the 7th International Conference on Analysis of Discontinuous Deformation. Honolulu, Hawaii, USA. December 10-12, 2005: 211-222.
[12]KOUREPINIS D, PEARCE C J, BICANIC N. Boundary Deformability and Convergence in the Higher-Order Numerical Manifold Method[C]//Proceedings of the 9th International Conference on Analysis of Discontinuous Deformation — New Development and Applications. Doi: 10.3850/9789810844554_9789810844554-0055.
[13]ZHENG H, LI W, DU X. Exact Imposition of Essential Boundary Condition and Material Interface Continuity in Galerkin-based Meshless Methods[J]. International Journal for Numerical Methods in Engineering, 2017, 110(7): 637-660.
[14]李 伟,郑 宏.基于数值流形法的渗流问题边界处理新方法[J].岩土工程学报,2017,39(10):1867-1873.
[15]YANG Y, GUO H, FU X, et al. Boundary Settings for the Seismic Dynamic Response Analysis of Rock Masses Using the Numerical Manifold Method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(9): 1095-1122.
[16]WEI W, ZHAO Q, JIANG Q,et al. Three New Boundary Conditions for the Seismic Response Analysis of Geomechanics Problems Using the Numerical Manifold Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 110-122.
[17]WANG X, YUAN Z. A Novel Weak Form Three-dimensional Quadrature Element Solution for Vibrations of Elastic Solids with Different Boundary Conditions[J]. Finite Elements in Analysis and Design, 2018, 141: 70-83.
[18]姜清辉, 邓书申, 周创兵. 三维高阶数值流形方法研 究[J]. 岩土力学, 2006, 27(9): 1471-1474.
[19]JIANG Q, ZHOU C, LI D. A Three-dimensional Numerical Manifold Method Based on Tetrahedral Meshes[J]. Computers & Structures, 2009, 87(13/14): 880-889.
[20]李海枫, 张国新, 石根华, 等. 流形切割及有限元网格覆盖下的三维流形单元生成[J]. 岩石力学与工程学报, 2010, 29(4): 731-742.
[21]周小义,邓安福.六面体有限覆盖的三维数值流形方法的非线性分析[J].岩土力学,2010,31(7):2276-2282.
[22]杨石扣, 张继勋, 任旭华, 等. 三维数值流形法在裂纹扩展中的应用研究[J]. 岩土力学, 2016, 37(10): 3017-3025.
[23]YANG Y T, TANG X H, ZHENG H, et al. Three-dimensional Fracture Propagation with Numerical Manifold Method[J]. Engineering Analysis with Boundary Elements, 2016, 72: 65-77.
[24]杨石扣,张继勋,任旭华.基于数值流形法的三维裂纹扩展研究[J].岩土力学,2018,39(增刊1):488-494.
[25]YANG S K, CAO M S, REN X H, et al. 3D Crack Propagation by the Numerical Manifold Method[J]. Computers & Structures, 2018, 194: 116-129.
[26]徐芝纶. 弹性力学(上册)[M]. 北京: 高等教育出版社, 2006.

基金

国家自然科学基金项目(51739006);江西省教育厅科学技术研究项目(GJJ190500);赣州市科技计划项目(赣市科发[2019]60号)

PDF(1512 KB)

Accesses

Citation

Detail

段落导航
相关文章

/