针对有限元法网格剖分和加密不方便、难以实现精确几何建模以及人工操作量大等问题,采用前期提出的独立覆盖流形法,利用其覆盖网格所具有的任意形状、任意连接和任意加密的特性,基于“凸剖分”的思路提出二维求解域的一种任意网格划分方法。在此基础上,结合前期研究的误差估计和h-p型混合自适应分析手段,尝试二维结构线弹性静力分析的自动计算,包括求解域的自动细分、多项式级数的自动升阶等过程。通过重力坝和带圆孔平板的2个算例验证了方法的可行性,其中第2个算例演示了从CAD的几何信息和计算参数输入到基于精确几何的CAE自动建模、自适应分析、成果自动输出的全过程,初步实现了CAE自动计算以及CAD与CAE的融合。
Abstract
Finite Element Method (FEM) is inconvenient in mesh division and subdivision, difficult in precise modeling of exact geometry, and costs large amount of labor operations. In view of this, we propose an approach of arbitrary mesh subdivision in the 2D solving domain based on convex decomposition idea using Manifold Method based on independent covers presented previously, in which cover meshes are of arbitrary shape, arbitrary connection and arbitrary subdivision. On this basis, with the help of error estimation and h-p version self-adaptive technology in previous studies, we attempt to implement the automatic static analysis of 2D linear-elastic structure, including the automatic subdivision of the solving domain, and the automatic elevation of polynomial orders. Two numerical examples, one of which is a gravity dam and the other is a plate with a small circular hole, are given to illustrate the validity of the present method. Especially in the latter, the whole procedure is exhibited, involving the input of geometry information and computational parameters in CAD, automatic CAE modeling with exact geometry, automatic self-adaptive analysis, as well as the automatic output of computational results. Hence, the automatic CAE computation and CAD/CAE integration are realized preliminarily.
关键词
任意形状网格 /
自动网格剖分 /
数值流形方法 /
CAD与CAE /
独立覆盖
Key words
meshes with arbitrary shape /
automatic mesh subdivision /
Numerical Manifold Method (NMM) /
CAD and CAE /
independent covers
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZIENKIEWICZ O C, TAYLOR R L. The Finite Element Method (The Sixth Edition)[M]. Oxford, United Kingdom: Butterworth-Heinemann, 2005.
[2] DUARTE C A,BABUSKA I,ODEN JT. Generalized Finite Element Methods for Three-dimensional Structural Mechanics Problems[J].Computer & Structures,2000,77(2):215-232.
[3] MOES N, DOLBOW J, BELYTSCHKO T. A Finite Element Method for Crack Growth Without Remeshing[J]. International Journal for Numerical Methods in Engineering,1999, 46(1): 131-150.
[4] HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement [J]. Computer Methods in Applied Mechanics and Engineering, 2005,194(39/41):4135-4195.
[5] BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless Methods: An Overview and Recent Developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4): 3-47.
[6] SHI G H. Manifold Method of Material Analysis[C]∥U.S. Army Research Office.Transactions of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota,USA,June 18-21,1991: 57-76.
[7] 苏海东, 颉志强, 龚亚琦, 等. 基于独立覆盖的流形法收敛性及覆盖网格特性[J]. 长江科学院院报,2016, 33(2):131-136.
[8] 苏海东, 龚亚琦, 颉志强, 等. 基于矩形独立覆盖初步实现结构静力分析的自动计算[J]. 长江科学院院报, 2016,33(2):144-150.
[9] 苏海东,陈积瞻,颉志强, 等.基于独立覆盖流形法的CAD与CAE融合研究[J]. 长江科学院院报,2017, 34(12):133-139,154.
[10]苏海东, 付 志, 颉志强. 基于任意形状网格和精确几何边界的数值计算[J]. 长江科学院院报, 2020,37(7):167-174.
[11]SU H D,QI Y F,GONG Y Q,et al. Preliminary Research of Numerical Manifold Method Based on Partly Overlapping Rectangular Covers[C]∥DDA Commission of International Society for Rock Mechanics. Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11),Fukuoka,Japan,August 27-29,2013,London:Taylor & Francis Group,2013:341-347.
[12]于 勇, 张 亚, 郭希娟, 等. 基于成功回路的凹多面体的剖分算法[J]. 计算机工程与应用, 2011, 47(2):41-42,51.
[13]苏海东, 袁笑晨, 龚亚琦. 独立覆盖误差分析的子模型法[J]. 长江科学院院报,2017, 34(12):147-154.
[14]徐芝纶.弹性力学[M]. 2版.北京:人民教育出版社,1982.
基金
国家自然科学基金项目(51509020);中央级公益性科研院所基本科研业务费资助项目(CKSF2016266/CL,CKSF2017052/CL)