长江科学院院报 ›› 2016, Vol. 33 ›› Issue (7): 121-125.DOI: 10.11988/ckyyb.20150343

• 水工结构与材料 • 上一篇    下一篇

高阶数值流形方法的速度公式

苏海东   

  1. 长江科学院 材料与结构研究所,武汉 430010
  • 收稿日期:2015-04-22 出版日期:2016-07-01 发布日期:2016-07-11
  • 作者简介:苏海东(1968-),男,湖北武汉人,教授级高级工程师,博士,主要从事水工结构数值分析工作和计算方法研究,(电话)027-82927167(电子信箱)suhd@mail.crsri.cn。
  • 基金资助:
    国家自然科学基金项目(10772034)

Velocity Equations for High-order Numerical Manifold Method

SU Hai-dong   

  1. Department of Material and Structure, Yangtze River Scientific Research Institute, Wuhan 430010, China
  • Received:2015-04-22 Online:2016-07-01 Published:2016-07-11

摘要: 高阶数值流形方法可以显著提高结构计算精度,但目前在涉及大位移的动力分析中往往得到精度很差、甚至不正确的速度结果。基于平面三角形数学网格和一阶多项式覆盖函数,通过一个刚体杆件旋转算例探讨其中的原因,得出必须考虑构形坐标变化对速度的影响,并提出高阶流形法的3种速度处理方法及相应的高阶速度公式。该方法对一些在结点处增加广义自由度的类似方法(如广义有限元)的几何非线性问题分析也具有一定的参考价值。

关键词: 数值流形方法, 高阶多项式覆盖函数, 大位移, 速度公式, 广义自由度

Abstract: Computational accuracy of structure deformation can be improved greatly by the high-order Numerical Manifold Method (NMM). However, poor accuracy or even incorrect velocity results were obtained in the dynamic analysis involved in large displacement. Based on 2-D triangular mathematical meshes and 1-order polynomial cover functions, the reason of the above cases is discussed through an example of rotation of a rigid bar in this paper. Three treatments and the corresponding equations for high-order velocities are presented for the first time, reflecting the change of configuration coordinates under large displacement. The high-order numerical manifold method is useful to other methods such as Generalized Finite Element Method (GFEM) which introduces generalized freedoms at nodes when solving geometric nonlinear problems.

Key words: Numerical Manifold Method(NMM), high-order polynomial cover function, large displacement, velocity equation, generalized degree of freedom

中图分类号: