高阶数值流形方法可以显著提高结构计算精度,但目前在涉及大位移的动力分析中往往得到精度很差、甚至不正确的速度结果。基于平面三角形数学网格和一阶多项式覆盖函数,通过一个刚体杆件旋转算例探讨其中的原因,得出必须考虑构形坐标变化对速度的影响,并提出高阶流形法的3种速度处理方法及相应的高阶速度公式。该方法对一些在结点处增加广义自由度的类似方法(如广义有限元)的几何非线性问题分析也具有一定的参考价值。
Abstract
Computational accuracy of structure deformation can be improved greatly by the high-order Numerical Manifold Method (NMM). However, poor accuracy or even incorrect velocity results were obtained in the dynamic analysis involved in large displacement. Based on 2-D triangular mathematical meshes and 1-order polynomial cover functions, the reason of the above cases is discussed through an example of rotation of a rigid bar in this paper. Three treatments and the corresponding equations for high-order velocities are presented for the first time, reflecting the change of configuration coordinates under large displacement. The high-order numerical manifold method is useful to other methods such as Generalized Finite Element Method (GFEM) which introduces generalized freedoms at nodes when solving geometric nonlinear problems.
关键词
数值流形方法 /
高阶多项式覆盖函数 /
大位移 /
速度公式 /
广义自由度
Key words
Numerical Manifold Method(NMM) /
high-order polynomial cover function /
large displacement /
velocity equation /
generalized degree of freedom
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 石根华. 数值流形方法与非连续变形分析 [M].裴觉民,译.北京:清华大学出版社, 1997.
[2] DUARTE C A, BABUSKA I, ODEN J T. Generalized Finite Element Methods for Three-dimensional Structural Mechanics Problems[J]. Computer & Structures, 2000, 77:215-232.
[3] DAUX C,MOES N, DOLBOW J,et al.Arbitrary Branched and Intersecting Cracks with the Extended Finite Element Method[J]. International Journal for Numerical Methods in Engineering, 2000, 48:1741-1760.
[4] 张湘伟, 章争荣,吕文阁. 数值流形方法研究及应用进展[J]. 力学进展,2010,40(1):1-12.
[5] 李录贤, 王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展,2005,35(1):5-20.
[6] 李录贤, 刘书静,张慧华. 广义有限元方法研究进展[J]. 应用力学学报,2009,26(1):96-108.
[7] 苏海东, 崔建华, 谢小玲. 高阶数值流形方法的初应力公式[J]. 计算力学学报, 2010,27(2): 270-274.
[8] WANG C Y, CHUANG C C, SHENG J. Time Integration Theories for the DDA Method with Finite Element Meshes[C]∥SALAMI M R, BANKS D. Proceedings of the First International Conference on Analysis of Discontinuous Deformation. Analysis (DDA) and Simulations of Discontinuous Media. Berkeley, CA: TSI Press, Albuquerque, NM, 1996:263-287.
[9] 苏海东,谢小玲,陈 琴. 高阶数值流形方法在结构静力分析中的应用研究[J]. 长江科学院院报,2005,22(5):74-77.
[10]林绍忠,祁勇峰,苏海东. 数值流形法中覆盖函数的改进形式及其应用[J]. 长江科学院院报,2006,23(6):55-58.