水力振源在某些工况下可能对机组的正常运行造成影响,同时引起厂房结构不同程度的振动,且水力振源频域分布广,作用范围大,是水力、机械、电磁3种振源中最主要的振源,因此研究水力脉动及其造成的影响有着十分重要的意义。现有的研究成果对于水力振源特性的研究主要依赖于模型试验,存在模型尺寸比例误差和测点过少等问题,对于机组及厂房结构的振动稳定性计算也过于简化。根据计算流体动力学(CFD)数值模拟方法,提出一种新的厂房水力振源研究方法,将水力振源转化为激励作用于转轮、蜗壳、尾水管部位,研究机组及厂房结构的稳定性,是未来可能的水力振源施加新方法,有着重要工程实际意义及应用前景。
Abstract
Hydraulic vibration source influences the normal operation of hydropower unit, and induces the vibration of powerhouse. As the most important source among the three vibration sources, hydraulic source distributes widely and affects large areas. Current research on the characteristics of hydraulic source mainly depends on model test which has scale error and is in lack of monitoring points. Also the stability calculation for hydropower unit and power house is excessively simplified. In view of this, a new approach of researching hydraulic source is put forward according to CFD (computational fluid dynamics) numerical simulation. The hydraulic source is converted into incitation on rotational wheel, spiral case and tail water tube to research the stability of unit and power house.
关键词
水力脉动 /
CFD数值模拟 /
机组 /
厂房 /
振动
Key words
hydraulic pulse /
CFD numerical simulation /
unit /
hydropower house /
vibration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 唐培甲.岩滩水电站水轮机振动问题的研究[J].红水河,2000,19(3):59-62.
[2] 孙建平,杨为民,郑莉媛.天生桥一级水电厂房机组稳定性分析[J].水力发电学报,2008,27(6):163-167.
[3] 胡宝玉,张利新,钟光华.小浪底转轮叶片裂纹产生原因分析及处理措施[J].中国水利,2004,(12):41-43.
[4] 沈 可, 张仲卿, 梁 政. 岩滩水电站厂房水力振动计算[J] . 水电能源科学, 2003, 21( 1) : 73- 75.
[5] 滕丽娟.水轮发电机组振动数据检测与分析系统的设计与开发[J].水电能源科学,2010,28(3):124-126.
[6] 杜凯堂.五强溪水电站混流式机组不稳定现象的分析和处理[J].大电机技术,2006,(4):40-45.
[7] 李启章,张 强,于纪幸,等.混流式水轮机水力稳定性研究[M].北京:中国水利水电出版社,2014.
[8] 刘树红,邵 奇,吴玉林,等.三峡水轮机的非定常湍流计算及整机压力脉动分析[J].水力发电学报,2004,23(5):97-101.
[9] 冯建军,武 桦,吴广宽,等.偏工况下混流式水轮机压力脉动数值仿真及其改善措施研究[J].水利学报,2014,45(9):1099-1105.
[10]廖伟丽,姬晋廷,逯 鹏,等.混流式水轮机的非定常流动分析[J].机械工程学报,2009,45(6):134-140.
[11]梁权伟,王正伟,方 源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004,23(3):116-120.
[12]蔡敢为,蓝永庭,李兆军,等.混流式水轮机转轮内流固耦合的有限元模型[J].广西大学学报(自然科学版),2008,33(1):35-39.
[13]王正伟,喻 疆.大型水轮发电机组转子动力学特性分析[J].水力发电学报,2005,24(4):62-66.
[14]李兆军,蔡敢为,杨旭娟,等.混流式水轮发电机组主轴系统非线性全局耦合动力学模型[J].机械强度,2008,30(2):175-183.
[15]宋志强,马震岳,张大伟.电磁与密封作用下水电机组振动的参数敏感性分析[J].水力发电学报,2012,31(1):226-231.
[16]王海军,涂 凯,陈继练.基于结构声强的水电站厂房振动传递路径研究[J].水利学报,2015,46(10):1247-1252.
[17]张存慧,周述达.大型水电站厂房结构流固耦合分析[J].水力发电学报,2012,31(6):192-197.
[18]张辉东.大型水电站厂房结构流固耦合振动特性研究[J].水力发电学报,2007,26(5):134-137.
[19]张辉东,王元丰,周 颖.大型水电站厂房结构流固耦联振动特性数值模拟[J].数值计算与计算机应用,2007,(12):267-274.
[20]张 波.水电站厂房机礅组合结构振动分析[D].大连:大连理工大学,2009.
[21]幸享林,陈建康,廖成刚,等.大型地下厂房结构振动反应分析[J].振动与冲击,2013,32(9):21-27.
[22]郭 涛,张立翔,姚 激.水轮机流道压力脉动诱发厂房振动分析[J].地震工程与工程振动,2011,31(6):136-140.
[23]沈 可.水电站厂房结构振动研究[D] . 南宁: 广西大学, 2002.
[24]宋志强,马震岳,陈 婧,等.龙头石水电站厂房振动分析[J].水利学报,2008,39(8):916-921.
[25]陈 婧,马震岳.水轮机压力脉动诱发厂房振动分析[J].水力发电,2004,30(5):24-27.
[26]欧阳金惠,张超然.巨型水电站厂房振动预测研究[J].土木工程学报,2008,41(2):100-104.
[27]王福军,黎耀军,王文娥.水泵CFD 应用中的若干问题与思考[J].排灌机械,2005,23(5):1-10.
[28]DL/T 507—2014,水轮发电机组启动试验规程[S].北京:中国电力出版社,2014.
[29]马震岳,董毓新.水轮发电机组动力学[M].大连:大连理工大学出版社,2003.
[30]GB/T15468—2006,水轮机基本技术条件[S].北京:中国标准出版社,2006.
[31]SL266—2014,水电站厂房设计规范[S].北京:中国水利水电出版社,2014.
[32]GB50190—93,多层厂房楼盖抗微振设计规范[S].北京:中国计划出版社,1994.
[33]GB50040—96,动力机器基础设计规范[S].北京:中国计划出版社,1997.
[34]沈 可.水电站厂房楼板振动分析[J].人民长江,2003,34(1):52-54.
[35]马震岳,董毓新.水电站机组及厂房振动的研究与治理[M].北京,中国水利水电出版社,2004.