大直径顶管下穿重要铁路干线时,路基的承载力和动力特性必将发生改变,铁路部门要求列车运行时顶管上方竖向动位移与顶管施工前相比变化量≤5 mm。对列车驶过顶管群上方铁路的过程进行了数值模拟,给出路基瞬时竖向位移和顶管附加动应力等结果。采用三维有限元Newmark动力时程分析法和seed等效线性法模拟路基的振动软化,按照实际工程考虑6根直径4.7 m的顶管群下穿京沪铁路,计算列车速度分别为100,200 km/h。计算结果表明,在管道埋深12 m时,路基最大竖向动位移增加1.3 mm,顶管受到的附加拉(压)动应力为0.14 MPa左右,顶管群对铁路运行的影响在容许范围内。
Abstract
The bearing capacity and dynamic characteristics of railway subgrade are bound to change in the presence of large-diameter pipe jacking passing underneath. The increment of vertical dynamic displacement above the pipe jacking should be within 5 mm, according to railway administrations. The process of train passing on the pipe jacking is numerically simulated. The instantaneous vertical displacement of subgrade and the additional dynamic stress of pipes are given. Newmark dynamic analysis method in association with Seed's equivalent linear method is employed to simulate the vibrational softening of subgrade. The simulation scenario is designed as a pipe jacking group composing six pipes of 4.7 m diameter passing underneath the Beijing-Shanghai railway, with the velocity of train reaching 100 km/h and 200 km/h respectively. When the pipes are buried at a depth of 12 m, the maximum vertical dynamic displacement of subgrade is 1.3 mm, and the additional tensile/compressive stress of pipes are around 0.14 MPa, within in allowable range.
关键词
铁路地基振动 /
顶管群 /
等效线性法 /
有限元法 /
时程分析
Key words
railway ground motion /
pipe jacking /
equivalent linear method /
finite element method /
time history analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 冯 印. 超大直径顶管群下穿京沪铁路的设计研究[J]. 铁道工程学报, 2015, 32(8): 12-19.
[2] SEED H B, MARTIN P P, LYSMER J. Pore-Water Pressure Changes during Soil Liquefaction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1976, 102(GT4): 323-346.
[3] SEED H B, IDRISS I M, MAKDISI F, et al. Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis[R]. California: Department of Civil Engineering, University of California, Berkeley, 1975.
[4] HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils: Design Equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692.
[5] CUELLAR V, BAZANT Z P, KRIZEK R J, et al. Densification and Hysteresis of Sand under Cyclic Shear[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1977, 103(5): 399-416.
[6] 徐志英, 沈珠江. 地震液化的有效应力二维动力分析方法[J]. 华东水利学院学报, 1981(3): 1-14.
[7] 沈珠江, 王仁种. 反复荷载作用下砂土变形的平均过程理论[J]. 水利水运科学研究, 1980(4):43-60.
[8] 李万红, 汪闻韶. 无粘性土非线性动力剪应变模型[J]. 水利学报, 1993(9):11-17,31.
[9] 边学成, 陈云敏. 列车荷载作用下轨道和地基的动响应分析[J]. 力学学报, 2005, 37(4): 477-485.
[10]边学成,陈云敏.列车移动荷载作用下分层地基响应特性[J].岩石力学与工程学报,2007,26(1):182-189.
[11]ISHIBASHI I, SHERIF M A, TSUCHIYA C. Pore-Pressure Rise Mechanism and Soil Liquefaction[J]. Journal of the Japanese Society of Soil Mechanics and Foundation Engineering, 1977, 17(2):17-27.
[12]DIETERMAN H A, METRIKINE A V. Steady-state Displacements of a Beam on an Elastic Half-space Due to a Uniformly Moving Constant Load[J]. European Journal of Mechanics-A/Solids, 1997, 16(2):295-306.
[13]SHENG X,JONES C J C,PETYT M. Ground Vibration Generated by a Harmonic Load Acting on a Railway Track[J]. Journal of Sound and Vibration,1999,225(1):3-28.
[14]KAYNIA A M, MADSHUS C, ZACKRISSON P. Ground Vibration from High-speed Trains: Prediction and Countermeasure[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2000, 126(6):531-537.
[15]TAKEMIYA H, SATONAKA S, XIE W P. Train Track-Ground Dynamics Due to High Speed Moving Source and Ground Vibration Transmission[J]. Proceedings of the Japan Society of Civil Engineers, 2001, 682: 299-309.
[16]JU S H, LIN H T. Analysis of Train-induced Vibrations and Vibration Reduction Schemes above and below Critical Rayleigh Speeds by Finite Element Method[J]. Soil Dynamics & Earthquake Engineering, 2004, 24(12): 993-1002.