水风光打捆可为新能源大规模高效、安全并网提供重要保障,有助于提高清洁能源利用效率,进而早日实现“双碳愿景目标”,但也将加剧对水电机组运行效率的影响。重点探讨了水风光打捆模式下不同新能源占比对水电机组效率的影响以及规律。首先,构建了水风光打捆送出模式下的日调度模型,然后以乌东德水电站及其附近的虚拟风、光电场为研究对象开展了算例研究。结果表明:随着新能源占比的增加,在枯期水电机组的运行效率会下降,而在汛期则呈现先升后降的规律;对比发现,在相同装机条件下,汛期水电机组效率的日内波动性较枯期小,汛期进行水风光打捆更有利于提高水电机组的运行效率。研究成果可为新能源大规模消纳背景下的装机容量优化配置和水电机组优化运行提供参考依据。
Abstract
The bundling of hydro-wind-solar energies serves as an important guarantee for the large-scale,efficient and safe grid-connection of new energy resources,and is conducive to improving the efficiency of clean energy utilization,thus realizing the “double carbon vision target” at an early date;on the other hand,it will also aggravate the influence on the operation efficiency of hydropower units.In this paper,the effect of different new energy ratios on the efficiency of hydropower units under the hydro-wind-solar bundling mode is discussed.First,a daily-bundling dispatching model is constructed under hydro-wind-solar mode,and then a numerical example is given to study the virtual wind and photoelectric fields around the Wudongde dam.Results reveal that with the increase of new energy,the operating efficiency of hydropower units will decrease in dry season but increase first and then decrease in flood season.The fluctuation of the efficiency of hydropower units within a day in flood season is smaller than that in dry season.Consequently,hydro-wind-solar bundling in flood season is more favorable to improve the operation efficiency of hydropower units.
关键词
清洁能源 /
水风光打捆 /
多能互补 /
水电机组 /
机组效率 /
乌东德水电站
Key words
clean energy /
hydro-wind-solar bundling /
multi-energy complementarity /
hydropower units /
power unit efficiency /
Wudongde hydropower station
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 万 灿,崔文康,宋永华.新能源电力系统概率预测:基本概念与数学原理[J].中国电机工程学报,2021,41(19):6493-6509.
[2] 中华人民共和国主席习近平.在第七十五届联合国大会一般性辩论上的讲话[N].人民日报,2020-09-23.
[3] WAN C,XU Z,PINSON P,et al.Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machine[J].IEEE Transactions on Power Systems,2014,29(3):1033-1044.
[4] 姜惠兰,周照清,蔡继朝.风电接入比例对电力系统暂态功角稳定性影响的分析方法[J].电力自动化设备,2020,40(7):53-67.
[5] 丁 明,王伟胜,王秀丽,等.大规模光伏发电对电力系统影响综述[J].中国电机工程学报,2014,34(1):1-14.
[6] 戚永志,黄越辉,王伟胜,等.高比例清洁能源下水风光消纳能力分析方法研究[J].电网与清洁能源,2020,36(1):55-63.
[7] 朱燕梅,陈仕军,马光文,等.计及发电量和出力波动的水光互补短期调度[J].电工技术学报,2020,35(13):2769-2779.
[8] LI H,LIU P,GUO S,et al.Long-term Complementary Operation of a Large-scale Hydro-photovoltaic Hybrid Power Plant Using Explicit Stochastic Optimization[J].Applied Energy,2019,238(15):863-875.
[9] LIU B,LUND J R,LIAO S,et al.Optimal Power Peak Shaving Using Hydropower to Complement Wind and Solar Power Uncertainty[J].Energy Conversion & Management,2020,209(4):112628-112629.
[10]张 娉,杨 婷.龙羊峡水光互补运行机制的研究[J].华北水利水电大学学报(自然科学版),2015,36(3):76-81.
[11]么艳香,叶 林,屈晓旭,等.风-光-水多能互补发电系统分析模型[J].电力自动化设备,2019,39(10):55-60.
[12]沈 筱,方国华,谭乔凤,等.风光水发电系统联合调度规则提取[J].水力发电,2020,46(5):114-117.
[13]单鹏珠,阎应飞,王 雁,等.梯级水光蓄协调优化控制技术研究[J].西华大学学报(自然科学版),2021,40(1):63-68.
[14]刘树桦,王建学,李清涛,等.多能互补复合电站的优化配置及其在系统电源规划中的应用[J].电网技术,2021,45(8):3006-3015.
[15]齐晓光,姚福星,朱天曈,等.考虑大规模风电接入的电力系统混合储能容量优化配置[J].电力自动化设备,2021,41(10):11-19.
[16]闻 昕,孙圆亮,谭乔凤,等.考虑预测不确定性的风-光-水多能互补系统调度风险和效益分析[J].工程科学与技术,2020,52(3):32-41.
[17]刘娟楠,王守国,王 敏.水光互补系统对龙羊峡水电站综合运用影响分析[J].电网与清洁能源,2015,31(9):83-87.
[18]张 蓓,朱燕梅,马光文,等.考虑新能源的梯级水电中长期调度策略研究[J].水电能源科学,2020,38(11):67-71.
[19]张歆蒴,黄炜斌,王 峰,等.大型风光水混合能源互补发电系统的优化调度研究[J].中国农村水利水电,2019,446(12):181-185.
[20]明 波,李 研,刘 攀,等.嵌套短期弃电风险的水光互补中长期优化调度研究[J].水利学报,2021,52(6):712-722.
[21]明 波,黄 强,王义民,等.水-光电联合运行短期调度可行性分析[J].太阳能学报,2015,36(5):2731-2737.
[22]HUANG K,LIU P,MING B,et al.Economic Operation of a Wind-Solar-Hydro Complementary System Considering
Risks of Output Shortage,Power Curtailment and Spilled Water[J].Applied Energy,2021,290:116805-116806.
[23]朱燕梅,陈仕军,黄炜斌,等.一定弃风光率下的水光风互补发电系统容量优化配置研究[J].水电能源科学,2018,36(7):215-218.
[24]朱燕梅,黄炜斌,陈仕军,等.水光互补日内优化运行策略[J].工程科学与技术,2021,53(3):142-149.
[25]李伟楠,王现勋,梅亚东,等.基于趋势场景缩减的水风光协同运行随机模型[J].华中科技大学学报(自然科学版),2019,47(8):120-127.
[26]黄国兵,吴 双.乌东德水电站主要水力学问题研究[J].长江科学院院报,2021,38(6):1-8.
[27]李良县,李 宁.金沙江下游(四川侧)风光水互补开发研究初探[J].水电站设计,2019,35(3):74-79.
[28]HULD T,FRIESEN G,SKOCZEK A,et al.A Power-rating Model for Crystalline Silicon PV Modules[J].Solar Energy Materials & Solar Cells,2011,95(12):3359-3369.
[29]DUFO-LOPEZ R,BERNAL-AGUSTIN J L.Multi-objective Design of PV-wind-diesel-hydrogen-battery Systems[J].Renewable Energy,2008,33(12):2559-2572.
[30]鲁显奎,杨昌杰.影响乌江渡水电站节能降耗的主要因素及应对措施[J].贵州水力发电,2007,76(1):72-74.
[31]陈 尧,马光文,杨道辉,等.水电站综合耗水率参数在水库优化调度中的应用[J].水力发电,2009,35(4):22-23.
基金
国家自然科学基金联合基金重点支持项目(U1865201);国家自然科学基金面上项目(51979198)