长江科学院院报 ›› 2024, Vol. 41 ›› Issue (4): 149-156.DOI: 10.11988/ckyyb.20221391

• 岩土工程 • 上一篇    下一篇

碎裂岩夹层中大跨度悬索桥隧道锚稳定性分析

张健1, 马建林2, 王钦科3, 苏伟4   

  1. 1.四川电力设计咨询有限责任公司,成都 610041;
    2.西南交通大学 土木工程学院,成都 610031;
    3.西南科技大学 土木工程与建筑学院,四川 绵阳 621010;
    4.中国铁路设计集团有限公司,天津 300308
  • 收稿日期:2022-10-19 修回日期:2023-02-06 出版日期:2024-04-01 发布日期:2024-04-11
  • 作者简介:张 健(1996-),男,四川宜宾人,硕士,从事岩土与地下工程方面的研究。E-mail:zhangajian@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFC0802203);四川省自然科学基金项目(2023NSFSC0881)

Stability of Tunnel Anchorage of Long-span Suspension Bridge in Fractured Rock Interlayer

ZHANG Jian1, MA Jian-lin2, WANG Qin-ke3, SU Wei4   

  1. 1. Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610041, China;
    2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    3. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China;
    4. China Railway Design Corporation, Tianjin 300308, China
  • Received:2022-10-19 Revised:2023-02-06 Online:2024-04-01 Published:2024-04-11

摘要: 隧道锚作为悬索桥的重要受力构件,其稳定性是保证悬索桥安全运行的关键。为探究某大跨度铁路悬索桥隧道锚在碎裂岩夹层中的受荷响应规律,建立精细化数值模型,对隧道锚的稳定性进行综合评估,论证隧道锚在碎裂岩夹层中的适用性和安全性。研究表明:碎裂岩夹层对隧道锚的变形影响显著,隧道锚后锚面及围岩的位移分布曲线呈左高右低的“驼峰状”,锚塞体界面摩阻力在碎裂岩夹层区域产生突变。锚-岩联合体的破坏从碎裂岩夹层中锚塞体拱顶区域开始,逐步向拱腰和拱底扩展,直至锚-岩界面塑性区贯通,其破坏模式为锚-岩接触带的剪切破坏。隧道锚的综合承载力以钢束受拉破坏为控制条件,综合极限承载力为2.3倍设计主缆力。隧道锚在碎裂岩夹层中的稳定性和适应性良好。

关键词: 隧道式锚碇, 碎裂岩体, 大跨度悬索桥, 稳定性分析, 数值模拟

Abstract: The stability of tunnel anchorage is a crucial factor in ensuring the safe operation of suspension bridges, as it forms an integral component of the structure. To investigate the load response behavior of tunnel anchorage in fractured rock interlayers of long-span suspension bridges, we have developed a three-dimensional numerical model. This model allows for a comprehensive evaluation of the stability of the tunnel anchorage, demonstrating its suitability and safety within fractured rock interlayers. Our findings highlight the significant impact of fractured rock interlayers on the deformation of tunnel anchorage. Specifically, the displacement distribution curve of the rear anchor face and surrounding rock exhibits a distinct hump shape, with greater displacement on the left while smaller displacement on the right. Additionally, the interface friction resistance of the anchorage experiences abrupt changes within the fractured rock interlayer region. The failure of the anchorage-rock system commences from the vault area within the fractured rock interlayer, gradually propagating towards the arch waist and bottom until the plastic zone of the anchorage-rock interface is connected. Shear failure in the contact zone between anchorage and rock characterizes the failure mode. The bearing capacity of the tunnel anchorage is governed by the tensile failure of the steel bundles, with the comprehensive ultimate bearing capacity reaching 2.3 times the designed main cable force. Overall, the tunnel anchorage demonstrates favorable stability and applicability within fractured rock interlayers.

Key words: tunnel anchorage, fractured rock mass, large-span suspension bridge, stability analysis, numerical simulation

中图分类号: