长江科学院院报 ›› 2022, Vol. 39 ›› Issue (9): 56-64.DOI: 10.11988/ckyyb.20210462
王伟1,2, 邹丽芳3, 周倩瑶1,2, 姜宇航1,2, 陈鸿杰4, 徐卫亚1,2
WANG Wei1,2, ZOU Li-fang3, ZHOU Qian-yao1,2, JIANG Yu-hang1,2, CHEN Hong-jie4, XU Wei-ya1,2
摘要: 针对传统滑坡位移预测过程中的不足,提出了一种基于最小二乘支持向量机(LSSVM)的滑坡位移预测方法。以某流域大华滑坡为例,基于时序分析和集合经验模态分解法(EEMD)将原始序列重构为趋势项和波动项,趋势项位移受滑坡内部因素影响,采用最小二乘法与多项式方程进行拟合预测;波动项位移受库水位、降雨、地下水位等周期性因素影响,结合灰色关联度法和核主成分分析法(KPCA)对输入因子进行筛选与降维,并用粒子群算法-最小二乘支持向量机耦合模型(PSO-LSSVM)进行建模预测。最后将趋势项与周期项预测位移相加得到累计预测位移,并对模型预测精度进行定量分析。结果表明,建立的EEMD-KPCA-PSO-LSSVM组合模型预测效果良好,较传统BP神经网络、LSSVM等单一模型有着更高的预测精度,可为同类型滑坡位移预测提供新的思路。
中图分类号: