WA-BT-ELM耦合模型在黄土滑坡位移预测中的应用

李骅锦, 许强, 王思澄, 亓星, 彭大雷, 何雨森

长江科学院院报 ›› 2017, Vol. 34 ›› Issue (9) : 63-69.

PDF(2544 KB)
PDF(2544 KB)
长江科学院院报 ›› 2017, Vol. 34 ›› Issue (9) : 63-69. DOI: 10.11988/ckyyb.20160529
工程安全与灾害防治

WA-BT-ELM耦合模型在黄土滑坡位移预测中的应用

  • 李骅锦1, 许强1, 王思澄2, 亓星1, 彭大雷1, 何雨森3
作者信息 +

Application of a Novel Predictive Model Integrating Wavelet Analysis,Boosting Regression Tree and Extreme Learning Machine toLoess Landslide Displacement

  • LI Hua-jin1,XU Qiang1,WANG Si-cheng2,QI Xing1,PENG Da-lei1,HE Yu-sen3
Author information +
文章历史 +

摘要

黄土滑坡的变形演化过程往往受到多种因素的影响,呈现出非线性特征。基于小波分析函数(Wavelet Analysis,WA)、提升回归树(Boosting Regression Tree,BT),以及极限训练机(Extreme Learning Machine,ELM)方法,提出一种名为WA-BT-ELM的黄土滑坡位移预测新方法。该方法将非线性位移数据作为一时间序列,运用小波分析函数将监测点累积位移曲线分解为若干子小波;随后使用提升回归树对所有子小波进行重要度分析,剔除相关性不高的子小波以去掉冗杂信息;最后运用极限训练机,结合筛选得到的子小波对滑坡位移进行预测分析。基于该模型对甘肃省永靖县黑方台滑坡区的滑坡位移监测数据进行预测,得到了优于ANN,BPNN,SVM,ELM,以及WA-ELM预测模型的结果,故认为WA-BT-ELM模型是一种有效的黄土滑坡位移预测方法。

Abstract

The deformation evolution process of loess landslide is often nonlinear due to many factors. A theoretical approach named WA-BT-ELM, which is based on wavelet analysis (WA), boosting regression tree (BT) and extreme learning machine (ELM), is proposed to predict loess landslide displacements. By analysis of nonlinear loess landslide time-dependent displacement dataset, the accumulation displacement data signal is decomposed into a series of sub-wavelets. Then, the importance of all the sub-wavelets to the displacement data series is computed by BT algorithm. The highly important sub-wavelets are selected to make further predictions. Furthermore, the predictive results of sub-wavelet and the original landslide displacement series are obtained through ELM algorithms. A case study of Heifangtai landslide in Gansu Province is presented to verify the predictive results. In comparison, the predictive results by using WA-BT-ELM model is faster and more accurate than those by ANN,BPNN,SVM,ELM and WA-ELM model, indicating that the WA-BT-ELM model is effective in loess landslide displacement prediction cases.

关键词

黄土滑坡 / WA-BT-ELM耦合模型 / 位移预测 / 小波变换 / 提升回归树 / 极限训练机

Key words

loess landslide / WA-BT-ELM model / displacement prediction / wavelet analysis / boosting regression tree / extreme learning machine

引用本文

导出引用
李骅锦, 许强, 王思澄, 亓星, 彭大雷, 何雨森. WA-BT-ELM耦合模型在黄土滑坡位移预测中的应用[J]. 长江科学院院报. 2017, 34(9): 63-69 https://doi.org/10.11988/ckyyb.20160529
LI Hua-jin,XU Qiang,WANG Si-cheng,QI Xing,PENG Da-lei,HE Yu-sen. Application of a Novel Predictive Model Integrating Wavelet Analysis,Boosting Regression Tree and Extreme Learning Machine toLoess Landslide Displacement[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(9): 63-69 https://doi.org/10.11988/ckyyb.20160529
中图分类号: P642.22   

参考文献

[1] 李骅锦,许 强,何雨森,等. 甘肃黑方台滑坡滑距参数的BP神经网络模型[J] . 水文地质工程地质,2016, 43(4):141-146,152.
[2] 李骅锦,许 强,何雨森,等. WA联合ELM与OS-ELM的滑坡位移预测模型[J] . 工程地质学报,2016, 24(5):721-731.
[3] 李 强,李端有. 滑坡位移监测动态预报时间序列分析技术研究[J] . 长江科学院院报,2005, 22(6):22-25.
[4] QIN S Q, JIAO J J, WANG S J. The Predicable Time Scale of Landslides[J] . Bulletin of Engineering Geological Environment, 2001, 59(4):30-312.
[5] 陈卫兵,李端有. 基于非线性动力学的滑坡位移预测[J] . 长江科学院院报,2006, 23(2):28-30,34.
[6] 杨建国,晏鄂川,程温鸣. 滑坡变形特征的GPS监测信息识别研究[J] . 长江科学院院报,2012, 29(3):24-28.
[7] POUZOLS F M, LENDASSE A, BARROS A B. Autoregressive Time Series Prediction by Means of Fuzzy Inference Systems Using Nonparametric Residual Variance Estimation[J] . Fuzzy Sets System, 2010, 161(4):471-497.
[8] KAYACAN E, ULUTASB B, KAYNAKA O. Grey System Theory-based Models in Time Series Prediction[J] . Expert System Application, 2010, 37(2):1784-1789.
[9] RAN Y F, XIONG G C, LI S S, et al. Study on Deformation Prediction of Landslide Based on Genetic Algorithm and Improved BP Neural Network[J] . Kybernetes: The International Journal of Systems & Cybernetics, 2010, 39(8):1245-1254.
[10] LIU Z, SHAO J, XU W, et al. Comparison on Landslide Nonlinear Displacement Analysis and Prediction with Computation Intelligence Approaches[J] . Landslides, 2013, 11(5):889-896.
[11] 尹光志, 张卫中, 张东明, 等. 基于指数平滑法与回归分析相结合的滑坡预测[J] . 岩土力学, 2007, 28(8): 1725-1728.
[12] LI X Z, KONG J M, WANG Z Y. Landslide Displacement Prediction Based on Combining Method with Optimal Weight[J] . Natural Hazards, 2012, 61(2): 635-646.
[13] HUANG G B, CHEN L, SIEW C K. Universal Approximation Using Incremental Constructive Feed Forward Networks with Random Hidden Nodes[J] . IEEE Transactions on Neural Network, 2006, 17(4): 879-892.
[14] HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: Theory and Applications[J] . Neurocomputing, 2006, 70(1-3):489-501.
[15] ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary Extreme Learning Machine[J] . Pattern Recognition, 2005, 38(10):1759-1763.
[16] HUANG G B. Learning Capability and Storage Capacity of Two-hidden-layer Feed Forward Networks[J] . IEEE Transactions on Neural Network, 2003, 14(2):274-281.
[17] HUANG G B, BABRI H A. Upper Bounds on the Number of Hidden Neurons in Feed Forward Networks with Arbitrary Bounded Nonlinear Activation Functions[J] . IEEE Transactions on Neural Network, 1998, 9(1):224-229.
[18] OUAMMI A, DAGDOUGUI H, SACILE R, et al. Monthly and Seasonal Assessment of Wind Energy Characteristics at Four Monitored Locations in Liguria Region (Italy)[J] . Renewable and Sustainable Energy Reviews, 2010, 14(7):1959-1968.
[19] MICHE Y, AKUSOK A, VEGANZONES D, et al. SOM-ELM-Self-Organized Clustering Using ELM[J] . Neurocomputing, 2015, 165(1):238-254.
[20] ZONG W W, HUANG G B. Face Recognition Based on Extreme Learning Machine[J] . Neurocomputing, 2011, 74(16): 2541-2551.
[21] YU Q, MICHE Y, SEVERIN E, et al. Bankruptcy Prediction Using Extreme Learning Machine and Financial Expertise[J] . Neurocomputing, 2014, 128(27):296-302.
[22] REN Fu, WU Xue-ling, ZHANG Kai-xiang, et al. Application of Wavelet Analysis and a Particle Swarm-optimized Support Vector Machine to Predict the Displacement of the Shuping Landslide in the Three Gorges, China[J] . Environmental Earth Sciences, 2015, 73(8):4791-4804.
[23] KAUNDA R B. A Linear Regression Framework for Predicting Subsurface Geometries and Displacement Rates in Deep-seated, Slow-moving Landslides[J] . Engineering Geology, 2010, 114(1/2):1-9.
[24] HE Y, KUSIAK A, OUYANG T, et al. Data-driven Modeling of Truck Engine Exhaust Valve Failures: A Case Study[J] . Journal of Mechanical Science and Technology, 2017, 31(6): 2747-2757.
[25] YU L, WANG S Y, LAI K K. Forecasting Crude Oil Price with an EMD-based Neural Network Ensemble Learning Paradigm[J] . Energy Economics, 2008, 30(5):2623-2635.
[26] GUO Z H, ZHAO W G, LU H Y, et al. Multi-step Forecasting for Wind Speed Using a Modified EMD Based Artificial Neural Network Model[J] . Renewable Energy, 2012, 37(1):241-249.
[27] SAMAR V J, BOPARDIKAR A, RAO R, et al. Wavelet Analysis of Neuroelectric Waveforms: A Conceptual Tutorial[J] . Brain and Language, 1999, 66(1):7-60.
[28] CHELLALI F, KHELLAF A, BEELOUCHRANI A. Wavelet Spectral Analysis of the Temperature and Wind Speed Data at Adrar,Algeria[J] .Renewable Energy,2010,35(6):1214-1219.
[29] SOYKAN C U, EGUCHI T, KOHIN S, et al. Prediction of Fishing Effort Distributions Using Boosted Regression Trees[J] . Ecological Applications, 2014, 24(1):71-83.
[30] RAO C R, MITRA S K. Generalized Inverse of Matrices and Its Applications[M] . Baltimore and London: John Wiley and Sons, 1971.
[31] SERRE D.Theory and Applications[M] .New York:Springer,2002.
[32] ORTEGA J M. Matrix Theory[M] .New York and London:Plenum Press, 1987.

基金

国家重点基础研究计划(973计划)资助项目(2014CB744703);国家杰出青年科学基金项目(41225011);教育部“长江学者奖励计划”项目( T2011186)

PDF(2544 KB)

Accesses

Citation

Detail

段落导航
相关文章

/