长江科学院院报 ›› 2021, Vol. 38 ›› Issue (6): 52-59.DOI: 10.11988/ckyyb.20200389
李龙起1, 王梦云2, 赵皓璆3, 王滔4, 赵瑞志5
LI Long-qi1, WANG Meng-yun2, ZHAO Hao-qiu3, WANG Tao4, ZHAO Rui-zhi5
摘要: 为提高白水河滑坡位移预测精度,提出一种新的预测模型,即基于自适应噪声完全集合经验模态分解(CEEMDAN)-蝙蝠算法(BA)-支持向量回归机(SVR)-自适应提升算法(Adaboost)的模型。以该滑坡为研究对象,利用CEEMDAN将滑坡位移分解为趋势项以及由IMF分项构成的波动项。首先采用BP神经网络对趋势项位移进行预测,随后利用CEEMDAN-BA-SVR-Adaboost模型对波动项进行预测,并将预测结果与CEEMDAN-PSO-SVR-Adaboost、CEEMDAN-BA-BP-Adaboost、CEEMADAN-BA-SVR、BA-SVR-Adaboost模型预测结果进行对比分析,验证本模型在位移预测方面的优越性。此外,利用CEEMDAN-BA-SVR-Adaboost模型对ZG118波动项位移进行预测,同时计算ZG93监测点最终累计预测位移。结果表明,对白水河滑坡位移进行预测时,CEEMDAN-BA-SVR-Adaboost模型具有较高的准确性和适用性。
中图分类号: