为提高白水河滑坡位移预测精度,提出一种新的预测模型,即基于自适应噪声完全集合经验模态分解(CEEMDAN)-蝙蝠算法(BA)-支持向量回归机(SVR)-自适应提升算法(Adaboost)的模型。以该滑坡为研究对象,利用CEEMDAN将滑坡位移分解为趋势项以及由IMF分项构成的波动项。首先采用BP神经网络对趋势项位移进行预测,随后利用CEEMDAN-BA-SVR-Adaboost模型对波动项进行预测,并将预测结果与CEEMDAN-PSO-SVR-Adaboost、CEEMDAN-BA-BP-Adaboost、CEEMADAN-BA-SVR、BA-SVR-Adaboost模型预测结果进行对比分析,验证本模型在位移预测方面的优越性。此外,利用CEEMDAN-BA-SVR-Adaboost模型对ZG118波动项位移进行预测,同时计算ZG93监测点最终累计预测位移。结果表明,对白水河滑坡位移进行预测时,CEEMDAN-BA-SVR-Adaboost模型具有较高的准确性和适用性。
Abstract
To improve the accuracy of predicting the displacement of Baishuihe landslide, we present a prediction model combining the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), bat algorithm (BA), support vector regression machine (SVR), and Adaptive Boosting (Adaboost). By using CEEMDAN, we decompose the displacement of Baishuihe landslide into trend term and fluctuation term composed of IMF sub-items. BP neural network is used to predict the trend term displacement, and the CEEMDAN-BA-SVR-Adaboost model to predict the fluctuation term. We further compare the present prediction result with those of CEEMDAN-PSO-SVR-Adaboost, CEEMDAN-BA-BP-Adaboost, CEEMADAN-BA-SVR, as well as BA-SVR-Adaboost models to verify the superiority of the present method in displacement prediction. We employ the CEEMDAN-BA-SVR-Adaboost model to predict the fluctuation term displacement of monitoring point ZG118 while calculating the final cumulative predicted displacement of monitoring point ZG93. Results verify that the CEEMDAN-BA-SVR-Adaboost model has good accuracy and applicability in predicting the displacement of Baishuihe landslide.
关键词
白水河滑坡 /
位移预测 /
自适应噪声完全集合经验模态分解(CEEMDAN) /
蝙蝠算法(BA) /
支持向量回归机(SVR) /
集成学习
Key words
Baishuihe landslide /
displacement prediction /
complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) /
bat algorithm (BA) /
support vector regression machine (SVR) /
Adaboost
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杜 娟,殷坤龙,柴 波,等.基于诱发因素响应分析的滑坡位移预测模型研究[J].岩石力学与工程学报,2009,28(9):1783-1789.
[2] 黄发明,殷坤龙,张桂荣,等.基于相空间重构和小波分析-粒子群向量机的滑坡地下水位预测[J].地球科学(中国地质大学学报),2015,40(7):1254-1265.
[3] 高彩云.基于智能算法的滑坡位移预测与危险性评价研究[D].北京:中国矿业大学(北京),2016.
[4] 徐 峰,汪 洋,杜 娟,等.基于时间序列分析的滑坡位移预测模型研究[J].岩石力学与工程学报,2011,30(4):746-751.
[5] 李仕波,李德营,张玉恩,等.基于LS_SVM模型的白水河滑坡台阶状位移预测[J].长江科学院院报,2019,36(4):55-59,76.
[6] 李骅锦,许 强,何雨森,等.WA联合ELM与OS_ELM的滑坡位移预测模型[J].工程地质学报,2016,24(5):72-731.
[7] HUANG N E, SHEN Z, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London,1998,454: 903-995.
[8] SONG Zong-yun, NIU Dong-xiao, QIU Jin-peng. Improved Short-term Load Forecasting Based on EEMD, Guassian Disturbance Firefly Algorithm and Support Vector Machine[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(3): 1709-1719.
[9] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague: IEEE, May 22-27, 2011: 4144-4147.
[10] VAPNIK V. The Nature of Statistical Learning Theory[M]. New York, USA: Springer-Verlag, 2000: 138-167.
[11] YANG X S. Nature Inspired Cooperative Strategies for Optimization[R]. Heidelberg: Springer, 2010.
[12] 王 煜,方 伟,王 亮,等.基于Adaboost_CART模型的动卧列车客座率预测[J].经营管理,2019,10(34):34-38.
[13] 陈洪凯,唐红梅.三峡库区大型滑坡发育机理[J].重庆师范大学学报(自然科学版),2009(4):43-47.
[14] 黄 鑫,王 辉,龙海忠.某堆积层滑坡的成因机制分析及稳定性评价[J].勘查技术科学,2020(4):27-32.
[15] 张 俊,殷坤龙,王佳佳,等.基于时间序列与PSO_SVR耦合模型的白水河滑坡位移预测研究[J].岩石力学与工程学报,2015,34(2):382-391.
[16] ZHOU Chao, YIN Kun-long, CAO Ying. Displacement Prediction of Step-like Landslide by Applying a Novel Kernel Extreme Learning Machine Method[J]. Landslides, 2018, 15(11): 2211-2225.
[17] 李麟玮,吴益平,苗发盛.基于灰狼支持向量机的非等时距滑坡位移预测[J].浙江大学学报(工学版),2018,52(10):1998-2006.
[18] 韩贺鸣,张 磊,施 斌,等.基于光纤监测和PSO_SVM模型的马家沟滑坡深部位移预测研究[J].工程地质学报,2019,27(4):853-861.
[19] 付建军,邱山鸣,赵海斌,等.基于灰色关联度的边坡稳定影响因素分析[J].长江科学院院报,2011,28(1):53-57.
[20] 汪 洋,殷坤龙,安关峰,等.滑坡敏感因子的灰色关联分析[J].岩土力学,2004,25(1):91-93.
基金
国家自然科学基金项目(41372306, 41502299);成都理工大学青年骨干计划项目(KYGG201720)