长江科学院院报 ›› 2019, Vol. 36 ›› Issue (9): 115-120.DOI: 10.11988/ckyyb.20180147

• 岩土工程 • 上一篇    下一篇

基于DE-LSSVM的地下洞室群支护参数智能优化

邬凯1,杨雪莲1,李佳2   

  1. 1.四川省交通运输厅 公路规划勘察设计研究院,成都 610041;
    2.国电大渡河流域水电开发有限公司,成都 610016
  • 收稿日期:2018-02-07 修回日期:2018-04-29 出版日期:2019-09-01 发布日期:2019-09-12
  • 作者简介:邬 凯(1985-),男,河南商丘人,高级工程师,博士,主要从事地质工程勘察设计相关工作。E-mail: wukaiscu@sina.com
  • 基金资助:
    四川省交通科技项目(2012C14-2)

Intelligent Optimization of Supporting Parameters for Large Underground Caverns Based on DE-LSSVM

WU Kai1,YANG Xue-lian1,LI Jia2   

  1. 1.Highway Planning, Survey, Design and Research Institute, Sichuan Provincial Communications Department, Chengdu 610041, China;
    2. Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
  • Received:2018-02-07 Revised:2018-04-29 Published:2019-09-01 Online:2019-09-12

摘要: 为解决大型地下洞室群三维支护优化计算量大、耗时长的问题,提出了一种基于差异进化算法(DE)和最小二乘支持向量机(LSSVM)的三维支护优化方法。该方法利用正交设计和FLAC3D三维数值模拟构造学习样本,再用差异进化算法搜寻最优的LSSVM模型参数,由此构建支护参数与评价指标之间的非线性映射关系,最后用差异进化算法从一定约束条件下的全局空间中搜索最优的支护参数。利用该方法对某水电站地下洞室群上部开挖支护参数进行了优化,提出了经济合理的支护参数,确保了工程开挖稳定,说明该方法在大型地下洞室群三维支护优化中具有良好的应用价值。

关键词: 地下洞室群, 最小二乘支持向量机, 差异进化算法, 智能优化, 支护参数

Abstract: To tackle the time-consuming heavy workload in optimizing the supporting parameters for large caverns, an intelligent optimization method is proposed by combining differential evolution algorithm (DE) and the least squares support vector machine (LSSVM). The learning samples are produced by orthogonal design and FLAC3D numerical simulation, and the optimal parameters of LSSVM are determined in global ranges by DE algorithm. Thus, the LSSVM with optimal parameters are used to describe the nonlinear relationship between supporting parameters and evaluation index. The DE algorithm is used again to search for the optimal supporting parameters in global ranges. The present method is applied to optimize the supporting parameters of underground caverns, and results demonstrate that the optimization method is of good application value in optimizing the supporting parameters of large underground caverns.

Key words: underground caverns, least squares support vector machine, differential evolution algorithm, intelligent optimization, supporting parameters

中图分类号: