长江科学院院报 ›› 2015, Vol. 32 ›› Issue (3): 112-116.DOI: 10.3969/j.issn.1001-5485.2015.03.022

• 水土保持新技术与新方法 • 上一篇    下一篇

基于遥感和GIS的流域社会经济数据空间化方法研究

任斐鹏1,2,江源2,董满宇2,张平仓1   

  1. 1.长江科学院 水土保持研究所,武汉 430010;
    2.北京师范大学 资源学院,北京 100875
  • 收稿日期:2015-01-05 出版日期:2015-03-01 发布日期:2015-03-06
  • 作者简介:任斐鹏(1982-),男,山西晋城人,高级工程师,博士,主要从事景观地理学、遥感与GIS应用研究,(电话)027-82926137(电子信箱)feipengren2006@mail.bnu.edu.cn。
  • 基金资助:

    国家自然科学基金青年科学基金项目(41301201);国家水体污染控制与治理科技重大专项(2012ZX07501002,2012ZX07503);中央级公益性科研院所基本科研业务费项目(CKSF2014023/TB);长江科学院水土流失与面源污染调控创新团队(CKSF2012052/TB)

Approach of Spatialising Socioeconomic Data in Watershed Scale by Remote Sensing and GIS

REN Fei-peng1,2,JIANG Yuan2,DONG Man-yu2,ZHANG Ping-cang1   

  1. 1.Soil and Water Conservation Department, Yangtze River Scientific Research Institute, Wuhan 430010, China;
    2.College of Resources Science and Technology, Beijing Normal University, Beijing 100875, China
  • Received:2015-01-05 Online:2015-03-01 Published:2015-03-06

摘要:

人口和社会经济数据及其空间分布,在资源、环境及自然灾害评估中的重要性已被广泛认知。把遥感和GIS技术相结合,是探讨解决社会经济统计数据空间化的重要思路。以东江流域为例,以多期人口、GDP、土地利用数据为基础,建立东江流域人口与土地利用、GDP和土地利用的多元线性回归模型;以土地利用数据和100 m×100 m网格数据为基础,构建东江流域人口和GDP空间分布约束力指标图层;然后结合统计模型和面积内插,实现了东江流域2009年人口、GDP统计数据的空间化。在县域空间尺度上对模拟结果进行了验证,与同尺度研究工作进行了对比,结果显示模拟得到的人口和GDP空间分布数据,与同尺度的研究工作处于同一精度或者略高的精度水平,表明该方法是一种进行流域社会经济数据空间化处理的有效方法。

关键词: 统计数据, 土地利用, 空间化, 遥感, GIS

Abstract:

The importance of population and socioeconomic data and their spatial distributions to researches of natural resources, environment and natural disaster assessment has been widely recognized. It’s a worthy exploration to solve the problem by combining remote sensing and GIS technology. According to the statistical population, GDP and land use data in Dongjiang watershed, we built multiple linear regression models by taking the statistical population or GDP as the dependent variable and per unit of statistical data carrying capacity as independent variables. Meanwhile, based on the raster land use data and 100m×100m grid data, the constraint index layers of population and GDP’s spatial distribution were obtained. Furthermore, through the regression model and GIS interpolation, the spatialisation of the statistical population and GDP data of Dongjiang watershed in 2009 was completed. The simulated result was verified to be equal or superior in county-scale by comparing with the actual statistical data in the same scale. The result suggests that to combine remote sensing and GIS is an effective way to spatialising socioeconomic data.

Key words: statistical data, land use, spatialization, remote sensing, GIS

中图分类号: