长江科学院院报 ›› 2014, Vol. 31 ›› Issue (12): 43-48.DOI: 10.3969/j.issn.1001-5485.2014.12.009

• 工程安全与灾害防治 • 上一篇    下一篇

基于储备池运算和分形插值的滑坡位移预测

姚为1,廉城2   

  1. 1.中南民族大学 计算机科学学院,武汉 430074;
    2.华中科技大学 自动化学院,武汉 430074)
  • 收稿日期:2013-07-16 修回日期:2014-12-05 出版日期:2014-12-01 发布日期:2014-12-05
  • 作者简介:姚 为(1983-),男,湖北红安人,讲师,博士,研究方向为时间序列分析和滑坡灾害预测,(电话)027-67842781(电子信箱)hevigreen@gmail.com。
  • 基金资助:
    国家自然科学基金项目(61203286)

Prediction of Landslide Displacement Based on Reservoir
Computing and Fractal Interpolation

YAO Wei1, LIAN Cheng2   

  1. 1. School of Computer Science, South-Central University for Nationalities, Wuhan 430074, China;
    2. School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China)
  • Received:2013-07-16 Revised:2014-12-05 Online:2014-12-01 Published:2014-12-05

摘要: 滑坡地质灾害的预警可通过监测并预测滑坡位移实现。滑坡演化过程机制复杂,在无法得到准确机理模型的情况下,建立数据驱动的滑坡位移模型是模拟滑坡演化趋势的有效途径。针对滑坡演化的复杂非线性以及动态特性,建立基于储备池运算的动态神经网络滑坡位移预测模型。为了使储备池得到更充分的训练,进一步引入分形插值方法对滑坡位移测量序列进行扩展。预测方法用于3种不同发展趋势的典型滑坡,都得到了精确的预测结果。方法为实现具有复杂动态特性的滑坡位移短时序预测问题提供了解决方案。

关键词: 滑坡, 储备池运算, 递归神经网络, 分形插值

Abstract: Landslide disasters can be warned based on monitoring and prediction of displacements. In view of the complex internal mechanisms of landslides, data-driven model is an effective approach of simulating landslide evolvement when the precise models reflecting the mechanisms cannot be obtained. Considering the complex nonlinear dynamics of landslides, we built a recurrent dynamic neural network for landslide displacement based on reservoir computing. Furthermore, we further employed fractal interpolation to enhance the reservoir training process and expand the displacement data sets. The method was used to predict the developments of three different typical landslides, and the predictions are all very close to the actual measurements. It is a good solution for complex dynamic prediction with short-time sequence.

Key words: landslide, reservoir computing, recurrent neural network, fractal interpolation

中图分类号: