针对动力荷载下软硬互层岩体破坏问题,以汶川水磨沟滑坡层状岩体为研究对象,依据相似理论,制作软硬互层岩质试块,开展单轴压缩及变上下限等幅值循环荷载试验,研究其动力特性及破坏过程。结果表明:随岩层倾角的增大,其破坏模式为贯通层面的张拉破坏(0°~30°)、沿层面的剪切破坏(45°~75°)及沿层面的劈裂破坏(90°),而试样的强度及应变先增后减。对于相同倾角的试样,强度随加载频率及围压增大而增大。应变随加载频率增大而减小,随围压增大而增大。加载频率的增大会导致竖向拉张裂缝贯通、破裂程度降低。
Abstract
This study investigates the failure behavior of soft-hard interbedded rock mass under dynamic loading conditions in the Shuimogou landslide area of Wenchuan, using soft-hard interbedded rock specimens created according to the similarity theory. Cyclic loading tests involving uniaxial compression and variable upper and lower limits were carried out to explore the dynamic characteristics and failure process of the specimens. The results show that the failure modes include tensile failure (0°-30°), shear failure (45°-75°), and cleavage failure (90°), depending on the dip angle of the rock layer. For specimens with the same inclination angle, strength increases with loading frequency and confining pressure, while strain decreases with the former but increases with the latter. In addition, higher loading frequency leads to the transfixion of vertical tension cracks and the decrease of fracture degree.
关键词
动力特性 /
循环荷载试验 /
软硬互层岩体 /
水磨沟滑坡 /
单轴压缩
Key words
dynamic characteristic /
cyclic loading test /
soft-hard interbedded rock mass /
Shuimogou landslide /
uniaxial compression
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 罗彦斌, 陈建勋, 王利宝, 等. 考虑层间黏聚力的水平层状围岩隧道顶板力学模型计算[J]. 中国公路学报, 2018, 31(10): 230-237, 265.
[2] 谭明健, 周春梅, 孙 东, 等. 软硬互层顺层岩质边坡破坏试验[J]. 地质科技通报, 2022, 41(2): 274-281, 324.
[3] 霍逸康,石振明,郑鸿超,黄达.软硬互层反倾岩质边坡稳定性影响因素分析及破坏模式研究[J/OL].工程地质学报:(2021-11-12)[2022-05-09].https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C45S0n9fL2suRadTyEVl2pW9UrhTDCdPD66k8PK2m9jjdHmJK_FNrspZOuUxtsOCD0S-9f_hRTZ7jttv2n2Bj8mR&uniplatform=NZKPT.
[4] LAJTAI E Z. Brittle Fracture in Compression[J]. International Journal of Fracture, 1974, 10(4): 525-536.
[5] WONG R H C, CHAU K T, TANG C A, et al. Analysis of Crack Coalescence in Rock-Like Materials Containing Three Flaws—Part I: Experimental Approach[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909-924.
[6] SAGONG M, BOBET A. Coalescence of Multiple Flaws in a Rock-Model Material in Uniaxial Compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 229-241.
[7] PINTO J L.Deformability of Schistose Rocks[C]//Proceedings of the 2nd ISRM International Congress on Rock Mechanics. Belgrade: International Society for Rock Mechanics. September 21, 1970: 491-496.
[8] 刘新荣, 余海龙, 姜德义, 等. 岩盐顶板复合岩石力学性质试验研究[J]. 重庆建筑大学学报, 2004, 26(3): 32-35, 58.
[9] 殷鹏飞. 层状复合岩石试样力学特性单轴压缩试验与颗粒流模拟研究[D]. 徐州: 中国矿业大学, 2016.
[10]程建龙, 杨圣奇, 殷鹏飞, 等. 复合岩层变形及强度特性卸围压试验研究[J]. 中国矿业大学学报, 2018, 47(6): 1233-1242.
[11]黄 锋, 周 洋, 李天勇, 等. 软硬互层岩体力学特性及破坏形态的室内试验研究[J]. 煤炭学报, 2020, 45(增刊1): 230-238.
[12]邵光钦. 层状岩体变形破坏及裂纹扩展试验与数值模拟[D]. 成都: 成都理工大学, 2019.
[13]邓天鑫. 强震作用下陡倾软硬相间顺层斜坡动力响应规律及其失稳机理研究[D]. 成都: 成都理工大学, 2018.