滑带土力学特性是复活型滑坡是否会再次启滑的关键因素之一,以往研究认为滑带土的残余强度是一个静态参数,但近年来不少研究发现滑带土强度在稳定期会产生自愈合现象,导致剪切强度的提高。对于可能发生复活启滑的平推式滑坡,自愈合效应在滑坡稳定性分析中应予以考虑。通过对红层平推式滑坡滑带土进行“剪切-固结-剪切”试验,研究滑带土的残余强度在不同法向应力与不同固结时间下的愈合情况,并进行相应的分析与讨论。试验结果表明:平推式滑坡滑带土存在自愈合效应,滑坡复活启动强度介于其峰值强度和残余强度之间;滑带土的强度恢复率与固结时间成正比,与法向应力成反比;平推式滑坡滑带土的触变性是其强度愈合机制的主要因素,矿物特征则对该机制起了某种程度的强化作用。以此提出,滑带土的强度愈合机制对平推式滑坡的复活启滑具有重要影响。
Abstract
The mechanical properties of slip zone soil play a crucial role in determining whether a reactivated landslide will slide again. In previous studies, the residual strength of slip zone soil has been regarded as a static parameter. However, recent research has revealed a self-healing effect in which the strength of slip zone soil increases in stable period. This self-healing effect needs to be considered in the stability analysis of reactivated translational landslides. In this study, a shear-consolidation-shear test was conducted on the slip zone soil of a red-bed translational landslide. The aim was to investigate the self-healing of residual strength of slip zone soil under different normal stresses and consolidation durations. The findings demonstrate the presence of a self-healing effect in slip zone soil. The initiation strength of reactivated landslide falls between its peak strength and residual strength. Moreover, the strength recovery ratio of slip zone soil is directly proportional to consolidation duration and inversely proportional to normal stress. The thixotropy of slip zone soil in translational landslides is the main factor underlying the strength healing mechanism, with the mineral characteristics contributing to some extent. In conclusion, the strength healing mechanism of slip zone soil significantly influences the reactivation and initiation sliding of translational landslides.
关键词
平推式滑坡 /
滑带土 /
自愈合效应 /
剪切试验 /
残余强度
Key words
translational landslide /
slip zone soil /
self-healing effect /
shear test /
residual strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 程 强, 寇小兵, 黄绍槟, 等. 中国红层的分布及地质环境特征[J]. 工程地质学报, 2004, 12(1): 34-40.
[2] 张倬元, 王士天, 王兰生,等. 工程地质分析原理[M]. 4版. 北京: 地质出版社, 1994.
[3] 任光明, 聂德新. 大型滑坡滑带土结构强度再生特征及其机理探讨[J]. 水文地质工程地质, 1997, 24(3): 28-31, 44.
[4] 任光明,聂德新,韩爱果.强度再生效应在大型滑坡稳定性评价中的应用[J].山地学报,2000,18(增刊1):60-64.
[5] 刘清秉, 王 顺, 夏冬生, 等. 残余强度状态下原状滑带土蠕变特性试验研究[J]. 岩土力学, 2017, 38(5): 1305-1313.
[6] MIAO H, WANG G, YIN K, et al. Mechanism of the Slow-Moving Landslides in Jurassic Red-Strata in the Three Gorges Reservoir, China[J]. Engineering Geology, 2014, 171: 59-69.
[7] MIAO H, WANG G. Effects of Clay Content on the Shear Behaviors of Sliding Zone Soil Originating from Muddy Interlayers in the Three Gorges Reservoir, China[J]. Engineering Geology, 2021, 294: 106380.
[8] WANG S, WU W, WANG J, et al. Residual-State Creep of Clastic Soil in a Reactivated Slow-Moving Landslide in the Three Gorges Reservoir Region, China[J]. Landslides, 2018, 15(12): 2413-2422.
[9] 缪海波, 殷坤龙, 王功辉. 库岸深层老滑坡间歇性复活的动力学机制研究[J]. 岩土力学, 2016, 37(9): 2645-2653.
[10] 曹世超, 黄志全, 吴 琦, 等. 巨型蠕滑滑坡滑带土特征强度特性试验研究[J]. 工程地质学报, 2019, 27(2): 341-349.
[11] 蒋 树, 王义锋, 唐 川, 等. 基于环剪试验的复活型低速滑坡活动机理[J]. 地质科技情报, 2019, 38(2): 256-261.
[12] WEN B P, JIANG X Z. Effect of Gravel Content on Creep Behavior of Clayey Soil at Residual State: Implication for Its Role in Slow-Moving Landslides[J]. Landslides, 2017, 14(2): 559-576.
[13] 陈晓平, 黄井武, 尹赛华, 等. 滑带土强度特性的试验研究[J]. 岩土力学, 2011, 32(11): 3212-3218.
[14] 任三绍, 张永双, 徐能雄, 等. 含砾滑带土复活启动强度研究[J]. 岩土力学, 2021, 42(3): 863-873, 881.
[15] 王 辉, 高东源, 吴 博. 考虑剩余剪应力的滑带土强度再生试验[J]. 中国地质灾害与防治学报, 2020, 31(1): 102-106.
[16] 陈传胜, 张建敏, 文仕知. 基于有效垂直应力水平的滑带土强度参数适用性研究[J]. 岩石力学与工程学报, 2011, 30(8): 1705-1711.
[17] GIBO S,EGASHIRA K,OHTSUBO M,et al. Strength Recovery from Residual State in Reactivated Landslides[J]. Géotechnique,2002,52(9):683-686.
[18] STARK T D, CHOI H, MCCONE S. Drained Shear Strength Parameters for Analysis of Landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(5): 575-588.
[19] BHAT D, BHANDERY N P, YATABE R. Experimental Study of Strength Recovery from Residual Strength on Kaolin Clay[J]. International Scholarly and Scientific Research & Innovation, 2013, 7(1): 76-82.
[20] BHAT D R, YATABE R, BHANDARY N P. Study of Preexisting Shear Surfaces of Reactivated Landslides from a Strength Recovery Perspective[J]. Journal of Asian Earth Sciences, 2013, 77: 243-253.
[21] CARRUBBA P, DEL FABBRO M. Laboratory Investigation on Reactivated Residual Strength[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(3): 302-315.
[22] STARK T D, HUSSAIN M. Shear Strength in Preexisting Landslides[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(7): 957-962.
基金
成都理工大学地质灾害防治与地质环境保护国家重点实验室自主研究课题(SKLGP2020Z008);西藏自治区自然资源厅项目(藏财采 20200890-1);四川省科技计划资助项目(2021YFSY0036)