长江科学院院报 ›› 2023, Vol. 40 ›› Issue (6): 49-54.DOI: 10.11988/ckyyb.20220004

• 水资源 • 上一篇    下一篇

时序分解和CNN-LSTM相融合的月径流预报模型

雷庆文1,2, 高培强3,4, 李建林5   

  1. 1.河北工程大学 水利水电学院,河北 邯郸 056038;
    2.河北工程大学 河北省智慧水利重点实验室,河北 邯郸 056038;
    3.中国矿业大学北京 煤炭资源与安全开采国家重点实验室,北京 100083;
    4.中国矿业大学北京 地球科学与测绘工程学院,北京 100083;
    5.河南理工大学 资源环境学院,河南 焦作 454000
  • 收稿日期:2022-01-05 修回日期:2022-03-15 出版日期:2023-06-01 发布日期:2023-06-21
  • 通讯作者: 高培强(1995-),男,河南新乡人,博士研究生,主要从事时间序列分析研究。E-mail: 15738519929@163.com
  • 作者简介:雷庆文(1994-),男,湖北孝感人,硕士研究生,主要从事水利信息化研究。E-mail: 15738519012@163.com
  • 基金资助:
    2022年度河南省高等学校重点科研项目(22A170009)

A Monthly Runoff Forecast Model Combining Time Series Decomposition and CNN-LSTM

LEI Qing-wen1,2, GAO Pei-qiang3,4, LI Jian-lin5   

  1. 1. School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China;
    2. Hebei Key Laboratory of Intelligent Water Conservancy, Hebei University of Engineering, Handan 056038, China;
    3. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing 100083, China;
    4. School of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083,China;
    5. Institute of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2022-01-05 Revised:2022-03-15 Online:2023-06-01 Published:2023-06-21

摘要: 针对常规模型无法充分提取径流序列复杂非线性特征信息的不足,提出一种基于局部加权回归周期趋势分解算法(STL)与卷积神经网络(CNN)和长短时记忆神经网络(LSTM)相融合的月径流预报模型。该模型首先利用STL将径流序列分解为趋势项、季节项和随机波动的余项,分解后的各分量序列输入CNN进行卷积运算和子采样层重采样,CNN输出的特征序列通过LSTM拟合时序关系后由全连接层输出径流预测值。以黑河流域讨赖河基准站的月径流数据为例,对比分析LSTM、STL-CNN、STL-CNN-LSTM三种模型的预测效果,验证结果表明:STL和CNN-LSTM相融合的模型预报误差最小、精度等级最高。该模型相较于直接对原始径流序列进行分析的常规模型,可以较为显著地提高月径流预测的能力。

关键词: 径流预测, STL, 非线性特征, 卷积神经网络, CNN-LSTM

Abstract: To address the limitations of conventional models in fully capturing the complex nonlinear characteristics of runoff sequences, a monthly runoff prediction model is proposed by integrating the Seasonal-Trend decomposition procedure based on Loess (STL) with convolutional neural networks (CNN) and long short-term memory neural networks (LSTM). In this model, the runoff sequence is first decomposed into trend components, seasonal components, and residual terms of random fluctuations using STL. The decomposed component sequences are then input to the CNN for convolutional operations and subsampling, and the CNN outputs feature sequences that capture temporal relationships. These sequences are further processed by LSTM and the predicted runoff values are obtained through fully connected layers. With the monthly runoff data from the Taolai River gauge station in the Heihe River Basin as an example, the prediction performance of three models, LSTM, STL-CNN, and STL-CNN-LSTM, is compared and analyzed. The validation results demonstrate that the model integrating STL and CNN-LSTM achieves the lowest prediction error and the highest accuracy. Compared to conventional models that directly analyze the original runoff sequence, this model significantly improves the ability to predict monthly runoff.

Key words: runoff forecast, Seasonal-Trend decomposition procedure based on Loess(STL), non-linear characteristics, convolutional neural networks(CNN), CNN-LSTM

中图分类号: