长江科学院院报 ›› 2012, Vol. 29 ›› Issue (9): 91-94.DOI: 10.3969/j.issn.1001-5485.2012.09.021

• 科技简报 • 上一篇    下一篇

基于R语言的数据挖掘在水环境管理中的应用

肖凯1a,  魏菲1b,  彭昌水2   

  1. 1.长江水利委员会 a.网络与信息中心水利发展研究所;b.机关服务中心计划财务处,武汉430010;2.长江科学院 信息中心,武汉430010
  • 收稿日期:2011-06-28 修回日期:2012-05-25 出版日期:2012-09-01 发布日期:2012-09-13
  • 作者简介:肖凯(1977-),男,湖北武汉人,工程师,硕士,主要从事水资源管理与数据挖掘方面的研究

Application of R Language Based Data Mining in Water Environment Management

XIAO Kai1,  WEI Fei2,  PENG Chang-shui3   

  1. 1.Network Information Center of Changjiang Water Resources Commission, Wuhan  430010, China; 2.Agencies Service Center of Changjiang Water Resources Commission, Wuhan  430010, China;3. Information Center, Yangtze River Scientific Research Institute, Wuhan 430010, China
  • Received:2011-06-28 Revised:2012-05-25 Online:2012-09-01 Published:2012-09-13

摘要: 运用数据挖掘中的分类回归树方法,对河流中的有害藻类生成进行了建模,分析得出河流中藻类生成的重要影响因子是磷酸盐含量、氯化物含量和最大pH值。另一方面,运用R语言实现并验证了CART 算法的优越性和易用性。其结论和方法有助于水环境管理部门更有效地对水质进行监测和预测。

关键词: 数据挖掘, 分类回归树, R语言, 水质监测

Abstract: The authors analyzed the model of harmful algal blooms in the river on the basis of classification regression tree (CART) algorithm of data mining. Results indicated that phosphate, chloride and the maximum pH values are key factors of algae generation. Furthermore, we employed the R language to validate the superiority and convenience of using CART algorithm. The conclusions and methods could contribute to a more effective water quality monitoring and forecasting.

Key words: data mining, classification and regression tree (CART), R language, water quality monitoring

中图分类号: