水质的人工监测与固定自动站监测断面数量有限、断面间距大,而水质自动巡测能够实现“高密度、多因子”的自由巡测,是研究水体污染物传输和分布规律一种新的技术方式,但目前该技术有待进一步在实践中运用与验证。利用“中国环监008”监测船,搭载自动监测设备,在长江干流(重庆至武汉区段)和三峡库区主要支流开展了水质巡测,掌握了长江重庆至武汉段水质状况和沿江污染物空间分布特征,证明了部分污染物分布特征与区域生产生活产生的污染负荷之间的相关性。通过质量控制及比对监测,评估了水质巡测技术的可行性和有效性。研究成果为开展长江大尺度、快速、动态、连续自动监测,摸清区域性水质问题,排查长江水环境风险提供技术支撑。
Abstract
The numbers of manual monitoring section and fixed automatic monitoring station are limited and the spacing of monitoring section is large. Shipborne automatic monitoring of water quality is a new technical approach to study the transmission and distribution law of water pollutants as it can accomplish automatic monitoring with high density and multiple parameters. However, this technology needs to be further verified in applications. In this study, the "China Environmental Monitoring 008" monitoring ship was equipped with the automatic monitoring devicesto monitor the water quality in the mainstream of the Yangtze River (from Chongqing to Wuhan) and the Three Gorges Reservoir area. The spatial distribution characteristics of pollutants along the Yangtze River from Chongqing to Wuhan was obtained. Correlation was found between the distribution of some pollutants and pollution load produced by regional production and life. The feasibility and effectiveness of the automatic monitoring technology was evaluated through quality control and comparison between automatic monitoring and manual monitoring. The research finding provides technical support for large-scale, rapid, dynamic and continuous automatic monitoring of the Yangtze River and investigations on water quality characteristics and environmental risks.
关键词
水质监测 /
污染物分布特征 /
自动巡测 /
监测船 /
长江
Key words
water quality monitoring /
distribution characteristics of pollutants /
automatic monitoring /
monitoring ship /
Yangtze River
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 生态环境部. 《生态环境监测规划纲要(2020-2035年)》.北京:生态环境部, 2020.
[2] 刘云兵, 刘 辉, 卓海华, 等. 船载水质高密度在线监测系统设计与应用, 人民长江, 2012, 43(12):71-73,85.
[3] YU Jin-dong,HUANG He,CHEN Guang-rong. Design and Implementation of Water Quality On-line Monitoring System Based on Combination of Multiple Data Transmission. Advanced Materials Research,2014,1051:573-577.
[4] 江爱晶. 水环境在线监测与评价预警系统的研制与开发.南京:东南大学, 2017.
[5] 王 宁, 程长阔, 杨鹏程, 等. 船载海洋生态在线监测技术研究与应用进展. 海洋科学, 2021, 45(10):133-140.
[6] 左 涛, 刘 辉, 杨旭光. 移动式水质自动监测技术应用初探. 人民长江, 2012, 43(12):74-77.
[7] 卓海华, 吴云丽, 蒋 静, 等. 长江中下游干流水功能区立体化监测系统探讨. 人民长江, 2012, 43(12):53-56.
[8] 生态环境部. 《2020中国生态环境状况公报》.北京:生态环境部, 2020.
[9] 潘 畅, 陈建湘, 黄长红, 等. 洞庭湖区水环境现状调查与分析.人民长江, 2018, 49(8):20-24,48.
[10] 李 旺, 祖 波, 李嘉雯. 三峡库区泥沙淤积特性研究. 中国农村水利水电, 2021(8):18-22.
[11] 李 灿. 三峡库区重庆段泥沙对富营养化影响研究. 重庆:重庆大学, 2005.
[12] 卓海华, 娄保锋, 吴云丽, 等. 新水沙条件下长江中下游干流水体总磷时空变化分析. 环境科学, 2020, 41(12):5371-5380.
[13] 安堃达, 张 帅, 程继雄, 等. 长江干流湖北段沿江城市水质状况及变化趋势研究. 环境科学与管理, 2020, 45(7):156-160.
[14] 刘德富, 杨正健, 纪道斌, 等. 三峡水库支流水华机理及其调控技术研究进展. 水利学报, 2016, 47(3):443-454.
[15] 罗光富. 支流河口水动力作用对三峡库区干支流营养盐交换的影响. 上海:华东师范大学, 2014.
[16] 唐海滨, 代嫣然, 范垚城, 等. 长江中游岸线水域典型污染物种类与来源解析. 长江科学院院报, 2021, 38(6):151-159.
[17] 袁 群. 长江航运对流域水环境质量影响的分析研究. 生态经济, 2014, 30(7):92-95.
[18] 周文强, 阙思思, 曾德芳, 等. 基于典型相关分析的长江航运与水环境间关系的实证研究. 长江流域资源与环境, 2020, 29(5):1183-1191.
[19] 徐 媛, 赵吉睿, 马 楠, 等. 基于多元统计分析的独流减河水质时空特征. 安全与环境学报, 2021, 21(3):1342-1351.
[20] 姜 波. 表面活性剂废水处理技术的研究进展. 黑龙江环境通报, 2010, 34(1):72-75.
[21] LIWARSKA-BIZUKOJC E, BIZUKOJC M. Digital Image Analysis to Estimate the Influence of Sodium Dodecyl Sulphate on Activated Sludge Flocs. Process Biochemistry, 2005, 40(6): 2067-2072.
[22] 田 盼, 李亚莉, 李莹杰, 等. 三峡水库调度对支流水体叶绿素a和环境因子垂向分布的影响. 环境科学, https://doi.org/10.13227/j.hjkx.202105201.
[23] WHITEHEAD P G, WILBY R L, BATTARBEE R W, et al. A Review of the Potential Impacts of Climate Change on Surface Water Quality. Hydrological Sciences Journal, 2009, 54(1): 101-123.
[24] 张 远, 夏 瑞, 张孟衡, 等. 水利工程背景下河流水华暴发成因分析及模拟研究. 环境科学研究, 2017, 30(8):1163-1173.