基于关联规则的库岸边坡监测数据挖掘方法

陈波, 詹明强, 黄梓莘

长江科学院院报 ›› 2022, Vol. 39 ›› Issue (8) : 58-64.

PDF(4515 KB)
PDF(4515 KB)
长江科学院院报 ›› 2022, Vol. 39 ›› Issue (8) : 58-64. DOI: 10.11988/ckyyb.20210457
工程安全与灾害防治

基于关联规则的库岸边坡监测数据挖掘方法

  • 陈波1,2, 詹明强1,2, 黄梓莘3
作者信息 +

Data Mining Method for Bank Slope Monitoring Based on Association Rules

  • CHEN Bo1,2, ZHAN Ming-qiang1,2, HUANG Zi-shen3
Author information +
文章历史 +

摘要

库岸边坡失稳灾害会对工程自身效益和周边生命财产安全造成巨大损失,而边坡运行监测资料记录了失稳灾害孕育的全过程信息。针对库岸边坡监测数据库的数据挖掘方法运行速度慢的问题,将FP-Growth关联规则算法引入到边坡安全监测数据挖掘中,通过FP-Growth关联规则算法开展边坡监测数据中的因果关联规则和空间关联规则挖掘工作,分别挖掘了边坡监测环境量和效应量之间的因果性、多测点效应量之间的关联性,从包含多测点多项目的边坡时空监测数据中提取了反映边坡运行性状的有效信息,并提供有效知识帮助。计算实例表明,FP-Growth关联规则算法实现过程简单,挖掘结果可靠,为类似库岸边坡的监测数据挖掘提供了一条良好的思路。

Abstract

The monitoring data of slope records the whole process information of slope instability disaster.The data mining of bank slope monitoring database runs slowly.FP-Growth association rule algorithm is introduced into slope safety monitoring data mining.The causal association rule and spatial association rule in slope monitoring data are mined by FP-Growth association rule algorithm.The causality between environmental variables and affected variables of slope monitoring and the correlation among affected variables of multiple measuring points are mined respectively.Effective information reflecting slope operation characteristics is extracted from slope spatio-temporal monitoring data containing multi-measuring points and multi-items.Calculation example shows that FP-Growth association rule algorithm is simple in implementation and reliable in mining results,hence providing a good approach for monitoring data mining of similar reservoir bank slopes.

关键词

库岸边坡监测 / 数据挖掘 / FP-Growth算法 / 因果关联规则 / 空间关联规则

Key words

reservoir bank slope monitoring / data mining / FP-Growth algorithm / cause-effect association rule / spatial association rule

引用本文

导出引用
陈波, 詹明强, 黄梓莘. 基于关联规则的库岸边坡监测数据挖掘方法[J]. 长江科学院院报. 2022, 39(8): 58-64 https://doi.org/10.11988/ckyyb.20210457
CHEN Bo, ZHAN Ming-qiang, HUANG Zi-shen. Data Mining Method for Bank Slope Monitoring Based on Association Rules[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(8): 58-64 https://doi.org/10.11988/ckyyb.20210457
中图分类号: TV698.1   

参考文献

[1] 张治强,蔡嗣经,马平波.数据挖掘在岩质边坡稳定性预测中的应用[J].北京科技大学学报,2003(2):103-105,146.
[2] 马水山,王志旺,张 漫.基于关联规则挖掘的滑坡监测资料分析[J].长江科学院院报,2004,21(5):48-51.
[3] 刘小珊,罗文强,李飞翱,等.基于关联规则的滑坡演化阶段判识指标[J].地质科技情报,2014,33(2):160-164.
[4] 揭 奇,施 斌,罗文强,等.基于DFOS的边坡多场信息关联规则分析[J].工程地质学报,2015,23(6):1146-1152.
[5] 王林伟,徐卫亚,张金龙.边坡岩体变形特征的关联规则挖掘研究[C]//Intelligent Information Technology Application Association.Proceedings of the 2011 International Conference on Future Computer Science and Application(FCSA 2011 V1).Intelligent Information Technology Application Association:智能信息技术应用学会,2011:4.
[6] 赵久彬,刘元雪,刘 娜,等.FRPFP模型滑坡监测预警关联规则挖掘分析:以三峡库区江津到奉节段为例[J].岩土工程学报,2019,41(3):492-500.
[7] 段功豪,牛瑞卿,咬登魁.基于关联规则算法的滑坡判据动态提取研究[J].安全与环境工程,2014,21(6):47-52.
[8] ZHAO X,YAN L,YANG L,et al.Deformation Characteristics and Influential Factors of a Toppling Rock Slope Based on the Grey Relational Analysis[J].European Journal of Environmental and Civil Engineering,2020,doi:10.1080/19648189.2020.1763850.
[9] 赵志峰.基于位移监测信息的岩石高边坡安全评价理论和方法研究[D].南京:河海大学,2007.
[10] 郑霞忠,陈国梁,邹 韬.考虑时间序列关联的大坝监测异常数据清洗[J].水力发电,2020,46(4):111-114,125.
[11] HAN J,PEI J,YIN Y,et al.Mining Frequent Patterns without Candidate Generation:A Frequent-Pattern Tree Approach[J].Data Mining & Knowledge Discovery,2004,8(1):53-87.
[12] ZHAO N H,HU B,YI Q L,et al.The Coupling Effect of Rainfall and Reservoir Water Level Decline on the Baijiabao Landslide in the Three Gorges Reservoir Area,China[J].Geofluids,2017(12):1-12.
[13] 王振武.数据挖掘算法原理与实现[M].北京:清华大学出版社,2017.

基金

国家重点研发计划项目(2018YFC0407104);国家自然科学基金项目(52079049);中央高校基本科研业务费项目(B200202160)

PDF(4515 KB)

Accesses

Citation

Detail

段落导航
相关文章

/