PDF(3043 KB)
PDF(3043 KB)
PDF(3043 KB)
滇中引水工程隧洞综合超前地质预报分析及应用
Analysis and Application of Comprehensive Advanced Geological Prediction Technologies for Tunnel of Central Yunnan Water Diversion Project
针对隧洞施工过程中不同工程地质条件下何种超前地质预报方法预测更为准确、更为适用和单一方法精确度不够、适用性不强的问题,分别介绍了基于地震波法的长距离隧洞超前地质预报技术和基于电磁法的中、短距离隧洞超前地质预报技术原理及特点,依据其工作原理、工作方式、预报距离等特点,探讨了不同超前地质预报方法的优、缺点及其最适用的工作场景,总结出一套实用性强的综合超前地质预报流程。依托滇中引水工程大理Ⅱ段两个隧洞的工程实例,利用所提出的综合超前地质预报流程,分别介绍了结合长距离的隧道地震预报(TSP)法、中短距离的瞬变电磁法和探地雷达法对断层破碎带和裂隙水等不良地质体的综合预报研究。首先,通过长距离预报方法对地质灾害危险程度进行分级、识别高危地段,再通过短距离预报方法对不良地质体进行更精确的识别与定位,综合分析3种超前地质预报方法的地球物理响应特征,可以推断出不良地质体的类型及其空间分布特征;其次,通过探地雷达探测溶蚀波场特征的案例分析,可以推断出溶蚀的物性特征、规模及其空间分布特征。预报结果与隧洞掌子面开挖揭示的结果基本一致,验证了3种超前地质预报方法预报隧洞不良地质体的可靠性,也证实了所提出的综合超前地质预报流程的实用性,有助于指导物探工作者对不良地质体进行更精确的预报,确保隧洞施工安全。
During tunnel construction, determining which advanced geological prediction method is most accurate and applicable under varying engineering geological conditions could be quite challenging. Single methods often lack sufficient accuracy and applicability. To address these issues, this paper introduces the principles and characteristics of advanced geological prediction technologies for long-distance tunnels using seismic wave methods and for medium- and short-distance tunnels using electromagnetic methods. We discuss the advantages and disadvantages of different advanced geological prediction methods based on their working principles, methods, and prediction ranges, and outline their most suitable scenarios. We propose a practical, comprehensive advanced geological prediction process, demonstrated through engineering examples from the Dali II section of the Central Yunnan Water Diversion Project. This process combines long-distance TSP method, medium- and short-distance TEM, and GPR to predict adverse geological features such as fault fracture zones and fissure water. Initially, we use long-distance prediction methods to classify the risk levels of geological disasters and identify high-risk sections. Subsequently, short-distance prediction methods more accurately identify and locate adverse geological features. By analyzing the geophysical response characteristics obtained from the three prediction methods, we evaluate the types and spatial distributions of adverse geological bodies. We also present a case study using GPR to detect dissolution, analyzing its wave-field characteristics to infer the physical properties, scale, and spatial distribution of dissolution features. The prediction results align closely with findings from tunnel excavation, validating the reliability of the three advanced geological prediction methods and confirming the practicality of the proposed comprehensive prediction process. This approach provides valuable guidance for geophysical exploration, enhancing the accuracy of geological predictions and ensuring tunnel construction safety.
隧洞超前预报 / TSP / 探地雷达 / 瞬变电磁 / 不良地质体
advanced geological prediction / Tunnel Seismic Prediction(TSP) / Ground-penetrating radar(GPR) / Transient Electromagnetic Method(TEM) / adverse geological body
| [1] |
席光勇. 深埋特长隧道(洞)施工涌水处理技术研究[D]. 成都: 西南交通大学, 2005.
(
|
| [2] |
武金博, 周华敏, 张杨, 等. 公路隧洞综合超前地质预报技术及应用[J]. 济南大学学报(自然科学版), 2021, 35(2):182-189.
(
|
| [3] |
DL/T 5783—2019, 水电水利地下工程地质超前预报技术规程[S]. 北京: 中国电力出版社, 2019.
(DL/T 5783—2019, Technical Code of Geological Advanced Prediction of Underground Engineering for Hydropower and Water Resources[S]. Beijing: China Electric Power Press, 2019. (in Chinese))
|
| [4] |
|
| [5] |
韩自强, 陈棚, 曹建. 综合超前地质预报技术在断层发育区隧道下穿水库工程建设中的应用[J]. 地球物理学进展, 2021, 36(6): 2702-2711.
(
|
| [6] |
杜俊, 廖健都, 韩成力. 调水工程富水破碎洞段综合超前地质预报技术[J]. 长江科学院院报, 2022, 39(12):15-20.
为避免或减小隧洞穿越富水破碎岩体发生突涌水、塌方等造成的危害,提出了基于地质分析、隧道地震预报(TSP)法与超前钻探结合的综合超前预报体系。首先通过地质分析对不良地质进行评估,之后利用TSP法对前方不良地质体进行定位,确认有不良地质构造存在,最后利用超前钻探进行预报。滇中引水工程富水破碎洞段的两个工程实例表明,此预报技术可准确地预测不良地质段以及涌水段位置和规模大小,可帮助工程技术人员及时地制定相对应的预警措施和处理对策,从而减少施工过程中突泥、涌水、塌方等地质灾害出现的概率,保证隧洞安全施工。
(
To mitigate or even avoid water inrush and collapses caused by tunnels crossing water-rich broken rock mass, a comprehensive advanced prediction system based on geological analysis, TSP (tunnel seismic prediction) method and advanced drilling is proposed. The unfavorable geology is evaluated through geological analysis, and then the TSP method is used to locate the unfavorable geological body in front. Subsequently, advanced drilling is used to predict the location and scale of the unfavorable geological structure after it is confirmed. Two engineering examples of the water-rich fractured segment of the Central Yunnan Water Diversion Project demonstrate that the proposed technology could accurately predict the location and scale of unfavorable geology and water inrush. Corresponding early warning measures and countermeasures can be made in time to reduce the probability of geological disasters such as mud inrush, water inrush, and landslides in the construction process and to ensure the safe construction of the tunnel.
|
| [7] |
SL 326—2005, 水利水电工程物探规程[S]. 北京: 中国水利水电出版社, 2005.
(SL 326—2005, Code for Engineering Geophysical Exploration of Water Resources and Hydropower[S]. Beijing: China Water & Power Press, 2005. (in Chinese))
|
| [8] |
付代光, 周黎明, 肖国强, 等. 滤波频带对TSP预报结果影响分析[J]. 岩土力学, 2018, 39(增刊2):315-325.
(
|
| [9] |
岳全贵, 张杨, 肖国强, 等. 探地雷达的常见干扰和不良地质体的超前预报在隧道工程中的应用[J]. 长江科学院院报, 2017, 34(8):36-40,63.
为了在隧道工程中准确应用探地雷达进行超前预报,针对可能遇到的常见干扰和典型不良地质体,探讨了常见干扰的成因及其对资料解译的影响,确定常见的干扰剖面图,并分别对天线耦合干扰和金属物干扰进行举例分析,提出探地雷达在采集数据过程中避开干扰的注意事项。列举3个工程实例,分别介绍了探地雷达对溶洞、断层裂隙水、软弱夹层等不良地质体的预报研究,通过分析其典型雷达剖面图的波形、频率、振幅等特征,依此推断出隧道开挖掌子面前方潜在不良地质体的类型以及位置、构造走向等空间分布特征。该结果与实际开挖揭示的不良地质体的分布范围基本一致,验证了探地雷达在预报隧道常见不良地质体的可行性和有效性。通过总结分析常见雷达干扰图像和典型不良地质体剖面图,有助于物探工作者对复杂地质体进行更精确地解释,确保隧道施工安全。
(
In order to apply ground penetrating radar(GPR) to accurate advanced geological prediction in tunnel engineering, we discussed the causes of common interferences and their influences on data interpretation, and determined the reflected interference information in profile of GPR image. Then, we gave examples of the antenna coupling and metal interferences and put forward precautions to avoid interference in the process of collecting GPR data. On the basis of three examples, we introduced the prediction of bad geological bodies such as karst cave, fault fissure water, and weak interlayer. Through analyzing typical characteristics of waveform, frequency and amplitude of the profile, we predicted the type of bad geological body as well as the spatial distribution characteristics like location and structure strike ahead of the working face of the tunnel. The prediction results are basically consistent with the distribution of bad geological bodies revealed by excavation, which proves that GPR is feasible and effective in the prediction of common bad geological bodies. By summarizing and analyzing the common radar interference images and the profiles of GPR images of typical geological bodies, we can provide references of interpreting complex geological bodies more precisely for geophysical workers and ensure the safety of tunnel construction.
|
| [10] |
琚建明. 超前地质预报技术在海底隧道施工中的应用[J]. 铁道工程学报, 2007, 24(7): 76-80, 93.
(
|
| [11] |
洪庆仁, 吴勇, 卓勇, 等. 综合超前地质预报在大秦岭隧道中的应用[J]. 人民长江, 2017, 48(7): 56-59.
(
|
| [12] |
赵晓博. 隧洞管波对于地震反射波法超前地质预报影响分析[J]. 工程勘察, 2018, 46(11):74-78.
(
|
/
| 〈 |
|
〉 |