采用探地雷达探测隧道二衬异常的过程中,很多因素会对探测效果产生影响,如发射和接收天线的连线与探测方向间不可避免会呈不同夹角,从而形成不同极化波。主要针对不同夹角α这一因素对隧道二衬探测效果的影响展开研究。为消除这一影响,指导实际施工和信号解释,通过GprMax3D加载线极化中不同天线极化方式建立不同环境的隧道二衬异常模型。由模型模拟分析和工程实例研究发现当夹角α由0°至90°变化时:①对于隧道二衬不同埋深钢筋,采用天线水平极化探测效果逐渐减弱,采用天线垂直极化探测效果基本保持不变;②对于隧道二衬空洞,采用天线水平极化探测效果逐渐减弱,采用天线垂直极化探测效果基本保持不变;③对于隧道二衬混凝土厚度不足区,采用天线水平极化探测效果越来越明显,采用天线垂直极化探测效果越来越弱;④对于隧道二衬破碎带区,无论何种极化波,对破碎带区的探测效果均影响不大,而更多的是受围岩综合介电常数值的影响。研究结果为隧道施工过程中二衬的质量检查提供了指导方法。
Abstract
The detection of anomalies in the secondary lining of tunnel using ground penetrating radar (GPR) is affected by many factors, such as the difference of linear polarization mode caused by varying angle between the antenna connection and the detection direction. Analyzing the modes of linear polarization would offer guidance for construction and signal interpreting in detecting the defects of tunnel’s secondary lining using GPR. In this paper, the detection effects corresponding to horizontal polarization and vertical polarization are examined by establishing numerical models via GprMax3D. Numerical simulation and engineering example analysis reveal that with the angle varying from 0° to 90°, 1) the effectiveness of detecting steel bars in different depths in horizontal polarization mode attenuates gradually, while the effectiveness with vertical polarization remains unchanged; 2) the effect of detecting cavities of the secondary lining in horizontal polarization mode also diminishes gradually, whereas the effect with vertical polarization stays stable; 3) on the contrary, the detection of thickness-insufficient zone in horizontal polarization mode strengthens, but in vertical polarization mode the detection effect weakens; 4) the detection of crushed zone is barely affected by polarization mode but by the value of dielectric constant of surrounding rock. The above research findings can be used to guide the quality inspection for the secondary lining of tunnels.
关键词
探地雷达 /
异常探测 /
隧道二衬 /
正演模拟 /
天线不同极化波
Key words
GPR /
anomaly detection /
secondary lining of tunnel /
forward modeling /
polarization of antenna
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王开华,周元茂,赵 辉,等. 探地雷达在隧道二次衬砌质量检测中的应用[C]∥四川省水力发电工程学会2018年学术交流会暨“川云桂湘粤青”六省(区)施工技术交流会论文集.成都:四川省水力发电工程学会,2018:269-273.[2] 邵伟伟,窦 顺.地质雷达检测隧道二衬钢筋对初支型钢拱架分辨率的影响研究[J].路基工程,2017(4):171-174.
[3] 孙忠辉,刘金坤,张新平,等. 基于GprMax的隧道衬砌地质雷达检测正演模拟与实测数据分析[J]. 工程地球物理学报,2013,10(5):730-735.
[4] 肖 都,李文杰,郭 鹏. 基于GPRMax的隧道衬砌检测数值模拟及应用[J]. 物探与化探,2015,39(4):855-859.
[5] 汪 谋. 公路隧道衬砌地质雷达正演数值模拟和室内模型试验的研究[D].上海:同济大学,2007.
[6] 李双喜,曾昭发,李 静,等.探地雷达极化探测时域有限差分法模拟效果分析[J].工程地球物理学报,2014,11(4):513-521.
[7] 徐建东,陈超纲. 探地雷达收发天线极化方向变化对其电磁波响应的影响[J]. 公路工程,2007,32(6):137-140.
[8] 谢处方,饶克谨. 电磁场与电磁波[M].4 版.北京:高等教育出版社,2006.
[9] 胡 云. 均匀平面电磁波极化的应用研究[J]. 大学物理,2012,31(12):38-41.
[10]朱卓娅,赵志伟,雷 威.电磁波极化的专题教学方法研究[J].电气电子教学学报,2016,38(2):88-90.
基金
江西有色地质勘查局科技创新项目(KF201904)