长江科学院院报

• •    下一篇

地下水封洞库施工期洞室围岩力学参数智能反演研究

曹洋兵1(), 陈可辛1, 黄月1, 李尧1, 张遂2, 黄真萍1   

  1. 1.福州大学 紫金地质与矿业学院 地质工程福建省高校工程研究中心,福州 350108
    2.贵州省地质矿产勘查开发局一〇三地质大队,贵州 铜仁 554300
  • 收稿日期:2023-12-14 修回日期:2024-04-07 出版日期:2024-04-25
  • 作者简介:曹洋兵(1987- ),男,江西九江人,副教授,博士,主要从事地下水封洞库工程与岩体稳定性评价研究。E-mail: cybing1140504@163.com
  • 基金资助:
    福建省自然科学基金项目(2023J01424);贵州省高层次创新型人才项目(黔科合平台人才[2020]6019-2号)

Study on Intelligent Inversion of Mechanical Parameters of Surrounding Rock of Underground Water-Sealed Storage Cavern During Construction

CAO Yang-bing1(), CHEN Ke-xin1, HUANG Yue1, LI Yao1, ZHANG Sui2, HUANG Zhen-ping1   

  1. 1. Engineering Research Center of Geological Engineering of Fujian Provincial Universities, Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
    2. 103 Geological Brigade of the Bureau of Geology and Mineral Exploration and Development in Guizhou Province, Tongren 554300, China
  • Received:2023-12-14 Revised:2024-04-07 Published:2024-04-25

摘要:

合理准确确定围岩力学参数对于地下水封洞库施工期围岩稳定性分析与支护结构设计具有重要意义。基于地下水封洞库工程地质特征,针对等效连续介质围岩模型,提出施工期洞室围岩力学参数智能反演方法。该方法首先通过室内试验与数值试验确定洞库岩体本构模型,再通过Hoek-Brown强度准则等多种方法估算本构模型中力学参数、分析各参数对围岩变形松弛的敏感性并设计待反演参数的正交试验方案,最后通过数值模拟获得样本并结合进化神经网络模型构建围岩力学参数智能反演模型。综合估算不同岩体基本质量级别下围岩力学参数初始取值范围,可克服智能算法大范围寻优而导致反演结果偏离较大的情况;开展力学参数对围岩变形松弛的敏感性分析,可减少反演参数的数量。以山东某地下水封洞库工程作为典型案例进行反演方法应用检验,获得的围岩拱顶沉降、洞周最大位移、内部变形以及平均松弛深度等参量的相对误差均不超过10%,满足工程应用精度,表明提出的智能反演方法具有较高可行性与可靠性,可为类似工程提供参考。

关键词: 地下水封洞库, 力学参数, 围岩稳定性, 神经网络, 数值试验

Abstract:

Reasonably and accurately determining the mechanical parameters of surrounding rock is of great significance to the stability analysis of surrounding rock and the design of supporting structure during the construction stage of underground water-sealed storage cavern. Based on the engineering geological characteristics of the underground water-sealed storage cavern, an intelligent inversion method of the mechanical parameters of the surrounding rock during the construction stage is proposed for the equivalent continuous medium model. Firstly, the constitutive model of the cavern rock mass is determined through laboratory tests and numerical tests. Then, the mechanical parameters of the constitutive model are estimated through Hoek-Brown strength criterion and other methods, and the sensitivity of each parameter to the deformation and relaxation of surrounding rock is analyzed. Based on these results, the orthogonal test scheme of the parameters to be inverted can be designed. Finally, the intelligent inversion model of the mechanical parameters of the surrounding rock is constructed by the samples obtained through numerical simulation and the evolutionary neural network model. The comprehensive estimation for the initial value range of the mechanical parameters of the surrounding rock under different class of rock mass basic quality can overcome the large deviation of the inversion results caused by the intelligent algorithm's wide range of optimization. The sensitivity analysis of the mechanical parameters to the deformation and relaxation of the surrounding rock can reduce the number of inversion parameters. The application of the intelligent inversion method is carried out in a typical underground water-sealed storage cavern project in Shandong province. The results show that, the relative errors of the settlement of the peripheral rock vault, the maximum displacement of the cavern circumference, the internal deformation and the average depth of relaxation are less than 10%, which satisfy the precision of engineering application. Thereby, the proposed intelligent inversion method has high feasibility and reliability through application, and it can provide references to the similar projects.

Key words: underground water-sealed storage cavern, mechanical parameters, stability of surrounding rock, neural network, numerical test

中图分类号: